Делится ли нацело число. Основные признаки делимости



Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

В этой статье мы рассмотрим признаки делимости чисел и как использовать признаки делимости при решении задач.

Признаки делимости чисел.

1. Признак делимости на 2 . Число делится на 2, если его запись оканчивается цифрой 0, 2, 4, 6, 8. Числа, которые делятся на 2 называются четными, соответственно, числа, которые на 2 не делятся, называются нечетными.

2. Признак делимости на 5 . Число делится на 5, если его запись оканчивается цифрой 0 или 5.

3. Признак делимости на 10 . Число делится на 10, если его запись оканчивается цифрой 0.

Вообще, если двумя последними цифрами записи числа являются нули, то число делится на 100, если три последние цифры записи числа нули, то на 1000 и т.д.

4. Признак делимости на 4 . Если две последние цифры записи числа образуют число, которое делится на 4, то исходное число делится на 4.

Например, две последние цифры числа 2116 образуют число 16, которое делится на 4, следовательно, 2116 делится на 4.

5. Признак делимости на 3 и на 9 . Если сумма цифр числа делится на 3 (соответственно на 9), то число делится на 3 (соответственно на 9).

Например, число 312 делится на 2 (последняя цифра 2) и на 3 (сумма цифр делится на 3), и, следовательно, на 6.

Вообще, если числа - взаимно простые (то есть не имеют общих делителей) и данное число делится на каждое из этих чисел, то оно делится на произведение этих чисел

6. Признак делимости на 7 . Число делится на 7, когда утроенное число десятков, сложенное с числом единиц делится на 7.

Например, число 427 делится на 7, т.к. число десятков в этом числе 42, 42х3+7=126+7=133; 133 делится на 7, т.к. число десятков в этом числе 13, 13х3+3==39+3=42.

7. Признак делимости на 11 . Число делится на 11, если модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места делится на 11, или если модуль разности равен нулю.

Например, число 12397 делится на 11, т.к. |(1+3+7)-(2+9)|=0

Чтобы установить делимость чисел, пользуются следующими признаками делимости суммы и произведения :

1. Сумма чисел делится на данное число, если каждое слагаемое суммы делится на это число.

2. Произведение чисел делится на данное число, если хотя бы один из множителей делится на это число.

Пример 1. Доказать, что число кратно 5.

Решение. Число кратно 5, если последняя цифра в записи числа равна 0 или 5.

Если число оканчивается цифрой 1, то любая степень этого числа оканчивается цифрой 1, следовательно, число оканчивается цифрой 1.

Если число оканчивается цифрой 6, то любая степень этого числа оканчивается цифрой 6, значит, число оканчивается цифрой 6.

Таким образом, разность оканчивается цифрой 5, и, следовательно, делится на 5.

Пример 2. Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.

а) 1. Число делится на 2 и 5, следовательно, последняя цифра - 0

2. Числа 2, 5, 9 и 11 не имеют общих делителей, следовательно искомое число должно делиться на произведение этих чисел, то есть на 990.

Наибольшее четырехзначное число, которое делится на 990 и оканчивается на 0 - это 9900.

По условию нам надо найти число, все цифры которого различны. Предыдущее число, которое делится на 2, 5, 9 и 11 равно 9900-990=8910. Это число удовлетворяет всем условиям задачи.

Ответ: 8910

Пример 3. Использовав все цифры от 1 до 9 по одному разу, составьте наибольшее девятизначное число, делящееся на 11.

Решение. В нашем числе модуль разности между суммой цифр, стоящих на нечетных местах и, и суммой цифр, занимающих чётные места должен делиться на 11.

Число должно быть наибольшим, поэтом цифры, стоящие на первых местах должны быть наибольшими. Пусть число имеет вид Чтобы число делилось на 11, нужно, чтобы значение выражения было кратно 11 или равно нулю.

Упростим выражение, получим:

Поскольку - это цифры, и самые большие уже задействованы, скомбинируем цифры 1, 2, 3, 4, 5 так, чтобы При этом числа в каждой группе: и должны быть расположены в порядке убывания. Подходит такая комбинация:

Ответ: 987652413

Признаками делимости пользуются при разложении числа на простые множители.

Натуральное число называется простым, если оно имеет только 2 различных делителя: единицу и само число .

Например, простыми числами являются числа 2, 3, 5, 7, 11, 13, 17 и т.д.

Внимание! Число 1 не является простым и не является составным.

Чтобы найти последовательность простых чисел, пользуются алгоритмом, который называется решето Эратосфена :

1. Выписываем ряд натуральных чисел:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, ...

2.Зачеркиваем числа, кратные числу 2 - каждое второе число после 2:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15, 16 , 17, 18 , 19, 20 , 21, 22 , 23, 24 , 25,...

3. Зачеркиваем числа, кратные числу 3 - каждое третье число после 3:

2, 3, 4 , 5, 6 , 7, 8 , 9 , 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25,...

4. Зачеркиваем числа, кратные числу 5 - каждое пятое число после 5:

2, 3, 4 , 5, 6 , 7, 8 , 9, 10 , 11, 12 , 13, 14 , 15 , 16 , 17, 18 , 19, 20 , 21 , 22 , 23, 24 , 25 ,...

2 , 3 , 4 , 5 , 6 , 7 , 8 , 9, 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17, 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ,...

Основная теорема арифметики:

Любое натуральное число, большее единицы, можно представить в виде произведения простых сомножителей, причем единственным способом.

Пример 4. Разложить число 4356 на простые множители.

Решение: Применим признаки делимости. Последняя цифра записи числа - четная, разделим число на 2. Будем делить на 2, пока возможно делить нацело.

Число 1089 на 2 уже не делится, но делится на 3 (сумма цифр числа равна 18). Будем делить на 3, пока это возможно.

121 делится на 11.

Итак,

Это равенство называется разложением числа 4356 на простые множители.

Разложение на простые множители широко применяется при решении самых разных задач.

Пример 5. Сократить дробь

Разложим числитель и знаменатель на простые множители:

Пример 6. Извлечь квадратный корень:

Воспользуемся разложением числа 4356 на простые множители:

Пример 7. Найдите наименьшее натуральное число, половина которого - квадрат, треть - куб, а пятая часть - пятая степень.

Наименьшее число, удовлетворяющее этим условиям представляет из себя произведение степеней чисел 2, 3, 5.

Пусть это число имеет вид:

а) Половина числа - квадрат, следовательно, n-1, m и k - четные числа.

б) Треть числа - куб, следовательно, n, m-1 и k делятся на 3.

в) Пятая часть числа - пятая степень, следовательно, n, m и k-1 - кратны 5.

k кратно 2 и 3, следовательно k может быть равно 6 (удовлетворяет а) и б) ), 6-1 делится на 5 (удовлетворяет в) ).

n кратно 3 и 5, следовательно, n может быть равно 15 (удовлетворяет в) и б) ), 15-1 делится на 2 (удовлетворяет а) ).

m - кратно 5 и 2, следовательно, m может быть равно 10 (удовлетворяет в) и а) ), 10-1 делится на 3 (удовлетворяет б) ).

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Выбор редакции
Религиозное чтение: самая сильная молитва матери о замужестве дочери в помощь нашим читателям.В прошлом столетии ученые провели...

К причинам появления язвенной болезни относят длительные стрессы, отрицательные эмоции, хронический холецистит, желчнокаменную ,...

Третье июня – особый день для верующих христиан. Эта дата отмечена в церковном календаре как день царя Константина равноапостольного и...

Романтический образ средневековой эпохи, рыцарских турниров и прекрасных дам, рожденный беллетристикой, сменился радикальным...
Что такое объяснительная записка? Как правильно написать объяснительную записку начальнику на работе за отсутствие на рабочем месте или...
Общее налоговое правило по подоходному налогу гласит, что НДФЛ попадают в государственную казну автоматически. Это значит, что за...
Фото: Денис Медведев / PhotoXPress.RUВесело грызть гранит науки! Было бы на что. С 1 января 2011 г. у нас опять начнётся новая жизнь....
Между подлежащим (группой подлежащего) и сказуемым (группой сказуемого) из всех знаков препинания употребляется только тире. ставится на...
В русском языке существуют особенные части речи, примыкающие к существительному или глаголу. Некоторые языковеды считают их особыми...