График функций распределения случайных величин x. Функции распределения случайной величины. Как найти функцию распределения случайной величины


Функцией распределения случайной величины X называется функция F(x), выражающая для каждого х вероятность того, что случайная величина X примет значение , меньшее х

Пример 2.5. Дан ряд распределения случайной величины

Найти и изобразить графически ее функцию распределения. Решение. В соответствии с определением

F(jc) = 0 при х х

F(x) = 0,4 + 0,1 = 0,5 при 4 F{x) = 0,5 + 0,5 = 1 при х > 5.

Итак (см. рис. 2.1):


Свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:

2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. при х 2

3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности - равна единице, т.е.

4. Вероятность попадания случайной величины X в интервал равна определенному интегралу от ее плотности вероятности в пределах от а до b (см. рис. 2.2), т.е.


Рис. 2.2

3. Функция распределения непрерывной случайной величины (см. рис. 2.3) может быть выражена через плотность вероятности по формуле:

F(x)= Jp (*)*. (2.10)

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Геометрически свойства / и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс , и полная площадь фигуры , ограниченной кривой распределения и осью абсцисс , равна единице.

Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам:

(если интеграл абсолютно сходится); или

(если приведенные интегралы сходятся).

Наряду с отмеченными выше числовыми характеристиками для описания случайной величины используется понятие квантилей и процентных точек.

Квантилем уровня q (или q-квантилем) называется такое значение x q случайной величины , при котором функция ее распределения принимает значение , равное q, т. е.

  • 100q%-ou точкой называется квантиль X~ q .
  • ? Пример 2.8.

По данным примера 2.6 найти квантиль xqj и 30%-ную точку случайной величины X.

Решение. По определению (2.16) F(xo t3)= 0,3, т. е.

~Y~ = 0,3, откуда квантиль х 0 3 = 0,6. 30%-ная точка случайной величины X , или квантиль Х)_о,з = xoj » находится аналогично из уравнения ^ = 0,7 . откуда *,= 1,4. ?

Среди числовых характеристик случайной величины выделяют начальные v* и центральные р* моменты к-го порядка , определяемые для дискретных и непрерывных случайных величин по формулам:


Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть (4)

где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О , лежащему внутри всего интервала возможных значений, т.е. x О [x , x + Dx ] О [a , b ] (5)

Тогда вероятность DW (x , Dx ) попадания x в интервал (5) равна

Здесь N – полное число измерений x , а Dn (x , Dx ) – число результатов, попавших в интервал (5).

Вероятность DW естественно зависит от двух аргументов: x – положения интервала внутри [a , b ] и Dx – его длины (предполагается, хотя это совершенно необязательно, что Dx > 0). Например, вероятность получения точного значения x , другими словами, вероятность попадания x в интервал нулевой длины есть вероятность невозможного события и потому равна нулю: DW (x , 0) = 0

С другой стороны, вероятность получить значение x где-то (все равно где) внутри всего интервала [a , b ] есть вероятность достоверного события (уж что-нибудь всегда получается) и потому равна единице (принимается, что b > a ): DW (a , b a ) = 1.

Пусть Dx мало. Критерий достаточной малости зависит от конкретных свойств системы, которую описывает распределение вероятностей DW (x , Dx ). Если Dx мало, то функцию DW (x , Dx ) можно разложить в ряд по степеням Dx :

Если нарисовать график зависимости DW (x , Dx ) от второго аргумента Dx , то замена точной зависимости приближенным выражением (7) означает замену (на небольшом участке) точной кривой куском параболы (7).

В (7) первое слагаемое равно нулю точно, третье и последующие слагаемые при достаточной малости Dx можно опустить. Введение обозначения

дает важный результат DW (x , Dx ) » r(x )·Dx (8)

Соотношение (8), выполняемое тем точнее, чем меньше Dx означает, что при малой длине интервала, вероятность попадания в этот интервал пропорциональна его длине.

Можно еще перейти от малого, но конечного Dx к формально бесконечно малому dx , с одновременной заменой DW (x , Dx ) на dW (x ). Тогда приближенное равенство (8) превращается в точное dW (x ) = r(x dx (9)

Коэффициент пропорциональности r(x ) имеет простой смысл. Как видно из (8) и (9), r(x ) численно равно вероятности попадания x в интервал единичной длины. Поэтому одно из названий функции r(x ) – плотность распределения вероятностей для переменной x .

Функция r(x ) содержит в себе всю информацию о том, как вероятность dW (x ) попадания x в интервал заданной длины dx зависит от местоположения этого интервала, т.е. она показывает, как вероятность распределена по x . Поэтому функцию r(x ) принято называть функцией распределения для переменной x и, тем самым, функцией распределения для той физической системы, ради описания спектра состояний которой была введена переменная x . Термины «плотность распределения вероятностей» и «функция распределения» в статистической физике используются как эквивалентные.

Можно рассмотреть обобщение определения вероятности (6) и функции распределения (9) на случай, к примеру, трех переменных. Обобщение на случай произвольно большого числа переменных выполняется точно также.

Пусть случайно меняющееся во времени состояние физической системы определяется значениями трех переменных x , y и z с непрерывным спектром:

x О [a , b ]

y О [c , d ]

z О [e , f ] (10)

где a , b ,…, f , как и ранее, не обязательно конечны. Переменные x , y и z могут быть, например, координатами центра масс молекулы газа, компонентами вектора ее скорости x Ю V x , y Ю V y и z Ю V z или импульса и т.д. Под событием понимается одновременное попадание всех трех переменных в интервалы длины Dx , Dy и Dz соответственно, т.е.:

x О [x , x + Dx ]

y О [y , y + Dy ]

z О [z , z + Dz ] (11)

Вероятность события (11) можно определить аналогично (6)

с тем отличием, что теперь Dn – число измерений x , y и z , результаты которых одновременно удовлетворяют соотношениям (11). Использование разложения в ряд, аналогичного (7), дает

dW (x , y , z ) = r(x , y , z dx dy dz (13)

где r(x , y , z ) – функция распределения сразу для трех переменных x , y и z .

В математической теории вероятностей термин «функция распределения» используется для обозначения величины отличающейся от r(x ), а именно: пусть x – некоторое значение случайной переменной x . Функция Ф(x), дающая вероятность того, что x примет значение не большее, чем x и называется функцией распределения. Функции r и Ф имеют разный смысл, но они связаны между собой. Использование теоремы сложения вероятностей дает (здесь а – левый конец интервала возможных значений x (см. ВЕРОЯТНОСТЕЙ ТЕОРИЯ): , (14) откуда

Использование приближенного соотношения (8) дает DW (x , Dx ) » r(x )·Dx .

Сравнение с точным выражением (15) показывает, что использование (8) эквивалентно замене интеграла, входящего в (16), произведением подынтегральной функции r(x ) на длину промежутка интегрирования Dx :

Соотношение (17) будет точным, если r = const , следовательно, ошибка при замене (16) на (17) будет невелика, когда подынтегральная функция слабо меняется на длине промежутка интегрирования Dx .

Можно ввести Dx эфф – длину интервала, на котором функция распределения r(x ) меняется существенно, т.е. на величину порядка самой функции, или величина Drэфф по модулю порядка r. Используя формулу Лагранжа, можно написать:

откуда следует, что Dx эфф для любой функции r

Функцию распределения можно считать «почти постоянной» на некотором промежутке изменения аргумента, если ее приращение |Dr| на этом промежутке по модулю много меньше самой функции в точках этого промежутка. Требование |Dr| эфф| ~ r (функция распределения r і 0) дает

Dx x эфф (20)

длина промежутка интегрирования должна быть мала по сравнению с той, на которой подынтегральная функция меняется существенно. Иллюстрацией служит рис. 1.

Интеграл в левой части (17) равен площади под кривой. Произведение в правой части (17) – площадь заштрихованного на рис. 1 столбика. Критерием малости отличия соответствующих площадей является выполнение неравенства (20). В этом можно убедиться, подставляя в интеграл (17) первые члены разложения функции r(x ) в ряд по степеням

Требование малости поправки (второго слагаемого в правой части (21) по сравнению с первым и дает неравенство (20) с Dx эфф из (19).

Примеры ряда функций распределения, играющих важную роль в статистической физике.

Распределение Максвелла для проекции вектора скорости молекулы на заданное направление (для примера, это направление оси OX ).

Здесь m – масса молекулы газа, T – его температура, k – постоянная Больцмана.

Распределение Максвелла для модуля вектора скорости :

Распределение Максвелла для энергии поступательного движения молекул e = mV 2/2

Распределение Больцмана , точнее, так называемая барометрическая формула, которая определяет распределение концентрации молекул или давления воздуха по высоте h от некоторого «нулевого уровня» в предположении, что температура воздуха от высоты не зависит (модель изотермической атмосферы). В действительности температура в нижних слоях атмосферы заметно падает с ростом высоты.

Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.

Закон распределения вероятностей функции одной случайной величины

При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.

Таким образом, возникает задача, которую можно сформулировать так.

Дана система случайных величин (X_1,X_2,\ldots,X_n) , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:

Y=\varphi(X_1,X_2,\ldots,X_n).

Требуется определить закон распределения случайной величины Y , зная вид функций (6.1) и закон совместного распределения ее аргументов.

Рассмотрим задачу о законе распределения функции одного случайного аргумента

Y=\varphi(X).

\begin{array}{|c|c|c|c|c|}\hline{X}&x_1&x_2&\cdots&x_n\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Тогда Y=\varphi(X) также дискретная случайная величина с возможными значениями . Если все значения y_1,y_2,\ldots,y_n различны, то для каждого k=1,2,\ldots,n события \{X=x_k\} и \{Y=y_k=\varphi(x_k)\} тождественны. Следовательно,

P\{Y=y_k\}=P\{X=x_k\}=p_k


и искомый ряд распределения имеет вид

\begin{array}{|c|c|c|c|c|}\hline{Y}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{P}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Если же среди чисел y_1=\varphi(x_1),y_2=\varphi(x_2),\ldots,y_n=\varphi(x_n) есть одинаковые, то каждой группе одинаковых значений y_k=\varphi(x_k) нужно отвести в таблице один столбец и соответствующие вероятности сложить.

Для непрерывных случайных величин задача ставится так: зная плотность распределения f(x) случайной величины X , найти плотность распределения g(y) случайной величины Y=\varphi(X) . При решении поставленной задачи рассмотрим два случая.

Предположим сначала, что функция y=\varphi(x) является монотонно возрастающей, непрерывной и дифференцируемой на интервале (a;b) , на котором лежат все возможные значения величины X . Тогда обратная функция x=\psi(y) существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем

G(y)=f\bigl(\psi(y)\bigr)\cdot |\psi"(y)|.

Пример 1. Случайная величина X распределена с плотностью

F(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}

Найти закон распределения случайной величины Y , связанной с величиной X зависимостью Y=X^3 .

Решение. Так как функция y=x^3 монотонна на промежутке (-\infty;+\infty) , то можно применить формулу (6.2). Обратная функция по отношению к функции \varphi(x)=x^3 есть \psi(y)=\sqrt{y} , ее производная \psi"(y)=\frac{1}{3\sqrt{y^2}} . Следовательно,

G(y)=\frac{1}{3\sqrt{2\pi}}e^{-\sqrt{y^2}/2}\frac{1}{\sqrt{y^2}}

Рассмотрим случай немонотонной функции. Пусть функция y=\varphi(x) такова, что обратная функция x=\psi(y) неоднозначна, т. е. одному значению величины y соответствует несколько значений аргумента x , которые обозначим x_1=\psi_1(y),x_2=\psi_2(y),\ldots,x_n=\psi_n(y) , где n - число участков, на которых функция y=\varphi(x) изменяется монотонно. Тогда

G(y)=\sum\limits_{k=1}^{n}f\bigl(\psi_k(y)\bigr)\cdot |\psi"_k(y)|.

Пример 2. В условиях примера 1 найти распределение случайной величины Y=X^2 .

Решение. Обратная функция x=\psi(y) неоднозначна. Одному значению аргумента y соответствуют два значения функции x


Применяя формулу (6.3), получаем:

\begin{gathered}g(y)=f(\psi_1(y))|\psi"_1(y)|+f(\psi_2(y))|\psi"_2(y)|=\\\\=\frac{1}{\sqrt{2\pi}}\,e^{-\left(-\sqrt{y^2}\right)^2/2}\!\left|-\frac{1}{2\sqrt{y}}\right|+\frac{1}{\sqrt{2\pi}}\,e^{-\left(\sqrt{y^2}\right)^2/2}\!\left|\frac{1}{2\sqrt{y}}\right|=\frac{1}{\sqrt{2\pi{y}}}\,e^{-y/2}.\end{gathered}

Закон распределения функции двух случайных величин

Пусть случайная величина Y является функцией двух случайных величин, образующих систему (X_1;X_2) , т. е. Y=\varphi(X_1;X_2) . Задача состоит в том, чтобы по известному распределению системы (X_1;X_2) найти распределение случайной величины Y .

Пусть f(x_1;x_2) - плотность распределения системы случайных величин (X_1;X_2) . Введем в рассмотрение новую величину Y_1 , равную X_1 , и рассмотрим систему уравнений

Будем полагать, что эта система однозначно разрешима относительно x_1,x_2


и удовлетворяет условиям дифференцируемости.

Плотность распределения случайной величины Y

G_1(y)=\int\limits_{-\infty}^{+\infty}f(x_1;\psi(y;x_1))\!\left|\frac{\partial\psi(y;x_1)}{\partial{y}}\right|dx_1.

Заметим, что рассуждения не изменяются, если введенную новую величину Y_1 положить равной X_2 .

Математическое ожидание функции случайных величин

На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.

Пусть случайная величина Y является функцией случайного аргумента X с заданным законом распределения

Y=\varphi(X).

Требуется, не находя закона распределения величины Y , определить ее математическое ожидание

M(Y)=M[\varphi(X)].

Пусть X - дискретная случайная величина, имеющая ряд распределения

\begin{array}{|c|c|c|c|c|}\hline{x_i}&x_1&x_2&\cdots&x_n\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Составим таблицу значений величины Y и вероятностей этих значений:

\begin{array}{|c|c|c|c|c|}\hline{y_i=\varphi(x_i)}&y_1=\varphi(x_1)&y_2=\varphi(x_2)&\cdots&y_n=\varphi(x_n)\\\hline{p_i}&p_1&p_2&\cdots&p_n\\\hline\end{array}

Эта таблица не является рядом распределения случайной величины Y , так как в общем случае некоторые из значений могут совпадать между собой и значения в верхней строке не обязательно идут в возрастающем порядке. Однако математическое ожидание случайной величины Y можно определить по формуле

M[\varphi(X)]=\sum\limits_{i=1}^{n}\varphi(x_i)p_i,


так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.

Формула (6.4) не содержит в явном виде закон распределения самой функции \varphi(X) , а содержит только закон распределения аргумента X . Таким образом, для определения математического ожидания функции Y=\varphi(X) вовсе не требуется знать закон распределения функции \varphi(X) , а достаточно знать закон распределения аргумента X .

Для непрерывной случайной величины математическое ожидание вычисляется по формуле

M[\varphi(X)]=\int\limits_{-\infty}^{+\infty}\varphi(x)f(x)\,dx,


где f(x) - плотность распределения вероятностей случайной величины X .

Рассмотрим случаи, когда для нахождения математического ожидания функции случайных аргументов не требуется знание даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики. Сформулируем эти случаи в виде теорем.

Теорема 6.1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

M(X+Y)=M(X)+M(Y).

Теорема 6.2. Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

M(XY)=M(X)M(Y)+\mu_{xy}.

Следствие 6.1. Математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Следствие 6.2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Дисперсия функции случайных величин

По определению дисперсии имеем D[Y]=M[(Y-M(Y))^2]. . Следовательно,

D[\varphi(x)]=M[(\varphi(x)-M(\varphi(x)))^2] , где .

Приведем расчетные формулы только для случая непрерывных случайных аргументов. Для функции одного случайного аргумента Y=\varphi(X) дисперсия выражается формулой

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}(\varphi(x)-M(\varphi(x)))^2f(x)\,dx,

где M(\varphi(x))=M[\varphi(X)] - математическое ожидание функции \varphi(X) ; f(x) - плотность распределения величины X .

Формулу (6.5) можно заменить на следующую:

D[\varphi(x)]=\int\limits_{-\infty}^{+\infty}\varphi^2(x)f(x)\,dx-M^2(X)

Рассмотрим теоремы о дисперсиях , которые играют важную роль в теории вероятностей и ее приложениях.

Теорема 6.3. Дисперсия суммы случайных величин равна сумме дисперсий этих величин плюс удвоенная сумма корреляционных моментов каждой из слагаемых величин со всеми последующими:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D+2\sum\limits_{i

Следствие 6.3. Дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых:

D\!\left[\sum\limits_{i=1}^{n}X_i\right]=\sum\limits_{i=1}^{n}D \mu_{y_1y_2}= M(Y_1Y_2)-M(Y_1)M(Y_2).

\mu_{y_1y_2}=M(\varphi_1(X)\varphi_2(X))-M(\varphi_1(X))M(\varphi_2(X)).


т. е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции .

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:

|\mu_{xy}|\leqslant\sqrt{D[X]\cdot D[Y]}=\sigma_x\cdot \sigma_y,

Выбор редакции
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...

Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...

Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...

Лепить во сне пельмени означает наступление нужды, ухудшение самочувствия и погибшие надежды. Покупать пельмени в магазине – наяву...
Ну кто же не любит спелую сладкую черешню? Она является одним из самых долгожданных лакомств в летний сезон практически для каждого...
Сон, в котором видится дохлый пес, можно назвать пугающим и ужасающим. Но чтобы его истолковать и узнать, к чему снится мертвая собака,...
Квас из чистотела по рецепту Болотова собрал весьма противоречивые отзывы, но к ним мы вернемся чуть ниже. А сейчас поговорим о полезных...
В переводе с грузинского «сацебели» - просто «соус», причем название произносят с ударением на первый слог. Чаще его делают из орехов,...
Сыроедческие спагетти лишь условно можно назвать именем популярных макаронных изделий, так как живые спагетти похожи на оригинал только...