Как по графику написать уравнение равноускоренного движения. Равнопеременное прямолинейное движение


«Физика - 10 класс»

Чем отличается равномерное движение от равноускоренного?
Чем отличается график пути при равноускоренном движении от графика пути при равномерном движении?
Что называется проекцией вектора на какую-либо ось?

В случае равномерного прямолинейного движения можно определить скорость по графику зависимости координаты от времени.

Проекция скорости численно равна тангенсу угла наклона прямой x(t) к оси абсцисс. При этом, чем больше скорость, тем больше угол наклона.


Прямолинейное равноускоренное движение.


На рисунке 1.33 изображены графики зависимости проекции ускорения от времени для трёх разных значений ускорения при прямолинейном равноускоренном движении точки. Они представляют собой прямые линии, параллельные оси абсцисс: а х = const. Графики 1 и 2 соответствуют движению, когда вектор ускорения направлен вдоль оси ОХ, график 3 - когда вектор ускорения направлен в противоположную оси ОХ сторону.

При равноускоренном движении проекция скорости зависит от времени линейно: υ x = υ 0x + a x t. На рисунке 1.34 представлены графики этой зависимости для указанных трёх случаев. При этом начальная скорость точки одинакова. Проанализируем этот график.

Проекция ускорения Из графика видно, что, чем больше ускорение точки, тем больше угол наклона прямой к оси t и соответственно больше тангенс угла наклона, который определяет значение ускорения.

За один и тот же промежуток времени при разных ускорениях скорость изменяется на разные значения.

При положительном значении проекции ускорения за один и тот же промежуток времени проекция скорости в случае 2 увеличивается в 2 раза быстрее, чем в случае 1. При отрицательном значении проекции ускорения на ось ОХ проекция скорости по модулю изменяется на то же значение, что и в случае 1, но скорость уменьшается.

Для случаев 1 и 3 графики зависимости модуля скорости от времени будут совпадать (рис. 1.35).


Используя график зависимости скорости от времени (рис 1.36), найдём изменение координаты точки. Это изменение численно равно площади заштрихованной трапеции, в данном случае изменение координаты за 4 с Δx = 16 м.

Мы нашли изменение координаты. Если необходимо найти координату точки, то к найденному числу нужно прибавить её начальное значение. Пусть в начальный момент времени х 0 = 2 м, тогда значение координаты точки в заданный момент времени, равный 4 с, равно 18 м. В данном случае модуль перемещения равен пути, пройденному точкой, или изменению её координаты, т. е. 16 м.

Если движение равнозамедленное, то точка в течение выбранного интервала времени может остановиться и начать двигаться в направлении, противоположном начальному. На рисунке 1.37 показана зависимость проекции скорости от времени для такого движения. Мы видим, что в момент времени, равный 2 с, направление скорости изменяется. Изменение координаты будет численно равно алгебраической сумме площадей заштрихованных треугольников.

Вычисляя эти площади, мы видим, что изменение координаты равно -6 м, это означает, что в направлении, противоположном оси ОХ, точка прошла большее расстояние, чем по направлению этой оси.

Площадь над осью t берём со знаком «плюс», а площадь под осью t, где проекция скорости отрицательна, - со знаком «минус».

Если в начальный момент времени скорость некоторой точки была равна 2 м/с, то координата её в момент времени, равный 6 с, равна -4 м. Модуль перемещения точки в данном случае также равен 6 м - модулю изменения координаты. Однако путь, пройденный этой точкой, равен 10 м - сумме площадей заштрихованных треугольников, показанных на рисунке 1.38.

Изобразим на графике зависимость координаты х точки от времени. Согласно одной из формул (1.14) кривая зависимости координаты от времени - x(t) - парабола.

Если движение точки происходит со скоростью, график зависимости которой от времени изображён на рисунке 1.36, то ветви параболы направлены вверх, так как а х > 0 (рис. 1.39). По этому графику мы можем определить координату точки, а также скорость в любой момент времени. Так, в момент времени, равный 4 с, координата точки равна 18 м.



Для начального момента времени, проводя касательную к кривой в точке А, определяем тангенс угла наклона α 1 , который численно равен начальной скорости, т. е. 2 м/с.

Для определения скорости в точке В проведём касательную к параболе в этой точке и определим тангенс угла α 2 . Он равен 6, следовательно, скорость равна 6 м/с.

График зависимости пути от времени - такая же парабола, но проведённая из начала координат (рис. 1.40). Мы видим, что путь непрерывно увеличивается со временем, движение происходит в одну сторону.

Если движение точки происходит со скоростью, график зависимости проекции которой от времени изображён на рисунке 1.37, то ветви параболы направлены вниз, так как а x < 0 (рис. 1.41). При этом моменту времени, равному 2 с, соответствует вершина параболы. Касательная в точке В параллельна оси t, угол наклона касательной к этой оси равен нулю, и скорость также равна нулю. До этого момента времени тангенс угла наклона касательной уменьшался, но был положителен, движение точки происходило в направлении оси ОХ.

Начиная с момента времени t = 2 с, тангенс угла наклона становится отрицательным, а его модуль увеличивается, это означает, что движение точки происходит в направлении, противоположном начальному, при этом модуль скорости движения увеличивается.

Модуль перемещения равен модулю разности координат точки в конечный и начальный моменты времени и равен 6 м.

График зависимости пройденного точкой пути от времени, показанный на рисунке 1.42 отличается от графика зависимости перемещения от времени (см. рис. 1.41).

Как бы ни была направлена скорость, путь, пройденный точкой, непрерывно увеличивается.

Выведем зависимость координаты точки от проекции скорости. Скорость υx = υ 0x + a x t, отсюда

В случае x 0 = 0 а х > 0 и υ x > υ 0x график зависимости координаты от скорости представляет собой параболу (рис. 1.43).


При этом, чем больше ускорение, тем ветвь параболы будет менее крутой. Это легко объяснить, так как, чем больше ускорение, тем меньше расстояние, которое должна пройти точка, чтобы скорость увеличилась на то же значение, что и при движении с меньшим ускорением.

В случае а х < 0 и υ 0x > 0 проекция скорости будет уменьшаться. Перепишем уравнение (1.17) в виде где а = |а x |. График этой зависимостимости - парабола с ветвями, направленными вниз (рис. 1.44).


Ускоренное движение.


По графикам зависимости проекции скорости от времени можно определить координату и проекцию ускорения точки в любой момент времени при любом типе движения.

Пусть проекция скорости точки зависит от времени так, как показано на рисунке 1.45. Очевидно, что в промежутке времени от 0 до t 3 движение точки вдоль оси X происходило с переменным ускорением. Начиная с момента времени, равного t 3 , движение равномерное с постоянной скоростью υ Dx . По графику мы видим, что ускорение, с которым двигалась точка, непрерывно уменьшалось (сравните угол наклона касательной в точках В и С).

Изменение координаты х точки за время t 1 численно равно площади криволинейной трапеции OABt 1 , за время t 2 - площади OACt 2 и т. д. Как видим по графику зависимости проекции скорости от времени можно определить изменение координаты тела за любой промежуток времени.

По графику зависимости координаты от времени можно определить значение скорости в любой момент времени, вычисляя тангенс угла наклона касательной к кривой в точке, соответствующей данному моменту времени. Из рисунка 1.46 следует, что в момент времени t 1 проекция скорости положительна. В промежутке времени от t 2 до t 3 скорость равна нулю, тело неподвижно. В момент времени t 4 скорость также равна нулю (касательная к кривой в точке D параллельна оси абсцисс). Затем проекция скорости становится отрицательной, направление движения точки изменяется на противоположное.

Если известен график зависимости проекции скорости от времени, можно определить ускорение точки, а также, зная начальное положение, определить координату тела в любой момент времени, т. е. решить основную задачу кинематики. По графику зависимости координаты от времени можно определить одну из самых важных кинематических характеристик движения - скорость. Кроме этого, по указанным графикам можно определить тип движения вдоль выбранной оси: равномерное, с постоянным ускорением или движение с переменным ускорением.

Если траектория движения точки известна, то зависимость пути , пройденного точкой, от истекшего промежутка времени дает полное описание этого движения. Мы видели, что для равномерного движения такую зависимость можно дать в виде формулы (9.2). Связь между и для отдельных моментов времени можно задавать также в виде таблицы, содержащей соответственные значения промежутка времени и пройденного пути. Пусть нам дано, что скорость некоторого равномерного движения равна 2 м/с. Формула (9.2) имеет в этом случае вид . Составим таблицу пути и времени такого движения:

Зависимость одной величины от другой часто бывает удобно изображать не формулами или таблицами, а графиками, которые более наглядно показывают картину изменения переменных величин и могут облегчать расчеты. Построим график зависимости пройденного пути от времени для рассматриваемого движения. Для этого возьмем две взаимно перпендикулярные прямые - оси координат; одну из них (ось абсцисс) назовем осью времени, а другую (ось ординат) - осью пути. Выберем масштабы для изображения промежутков времени и пути и примем точку пересечения осей за начальный момент и за начальную точку на траектории. Нанесем на осях значения времени и пройденного пути для рассматриваемого движения (рис. 18). Для «привязки» значений пройденного пути к моментам времени проведем из соответственных точек на осях (например, точек 3 с и 6 м) перпендикуляры к осям. Точка пересечения перпендикуляров соответствует одновременно обеим величинам: пути и моменту , - этим способом и достигается «привязка». Такое же построение можно выполнить и для любых других моментов времени и соответственных путей, получая для каждой такой пары значений время - путь одну точку на графике. На рис. 18 выполнено такое построение, заменяющее обе строки таблицы одним рядом точек. Если бы такое построение было выполнено для всех моментов времени, то вместо отдельных точек получилась бы сплошная линия (также показанная на рисунке). Эта линия и называется графиком зависимости пути от времени или, короче, графиком пути.

Рис. 18. График пути равномерного движения со скоростью 2 м/с

Рис. 19. К упражнению 12.1

В нашем случае график пути оказался прямой линией. Можно показать, что график пути равномерного движения всегда есть прямая линия; и обратно: если график зависимости пути от времени есть прямая линия, то движение равномерно.

Повторяя построение для другой скорости движения, найдем, что точки графика для большей скорости лежат выше, чем соответственные точки графика для меньшей скорости (рис. 20). Таким образом, чем больше скорость равномерного движения, тем круче прямолинейный график пути, т. е. тем больший угол он составляет с осью времени.

Рис. 20. Графики пути равномерных движений со скоростями 2 и 3 м/с

Рис. 21. График того же движения, что на рис. 18, вычерченный в другом масштабе

Наклон графика зависит, конечно, не только от числового значения скорости, но и от выбора масштабов времени и длины. Например, график, изображенный на рис. 21, дает зависимость пути от времени для того же движения, что и график рис. 18, хотя и имеет другой наклон. Отсюда ясно, что сравнивать движения по наклону графиков можно только в том случае, если они вычерчены в одном и том же масштабе.

С помощью графиков пути можно легко решать разные задачи о движении. Для примера на рис. 18 штриховыми линиями показаны построения, необходимые для того, чтобы решить следующие задачи для данного движения: а) найти путь, пройденный за время 3,5 с; б) найти время, за которое пройден путь 9 м. На рисунке графическим путем (штриховые линии) найдены ответы: а) 7 м; б) 4,5 с.

На графиках, описывающих равномерное прямолинейное движение, можно откладывать по оси ординат вместо пути координату движущейся точки. Такое описание открывает большие возможности. В частности, оно позволяет различать направление движения по отношению к оси . Кроме того, приняв начало отсчета времени за нуль, можно показать движение точки в более ранние моменты времени, которые следует считать отрицательными.

Рис. 22. Графики движений с одной и той же скоростью, но при различных начальных положениях движущейся точки

Рис. 23. Графики нескольких движений с отрицательными скоростями

Например, на рис. 22 прямая I есть график движения, происходящего с положительной скоростью 4 м/с (т. е. в направлении оси ), причем в начальный момент движущаяся точка находилась в точке с координатой м. Для сравнения на том же рисунке дан график движения, которое происходит с той же скоростью, но при котором в начальный момент движущаяся точка находится в точке с координатой (прямая II). Прямая. III соответствует случаю, когда в момент движущаяся точка находилась в точке с координатой м. Наконец, прямая IV описывает движение в случае, когда движущаяся точка имела координату в момент с.

Мы видим, что наклоны всех четырех графиков одинаковы: наклон зависит только от скорости движущейся точки, а не от ее начального положения. При изменении начального положения весь график просто переносится параллельно самому себе вдоль оси вверх или вниз на соответственное расстояние.

Графики движений, происходящих с отрицательными скоростями (т. е. в направлении, противоположном направлению оси ), показаны на рис. 23. Они представляют собой прямые, наклоненные вниз. Для таких движений координата точки с течением времени уменьшается., имела координаты

Графики пути можно строить и для случаев, в которых тело движется равномерно в течение определенного промежутка времени, затем движется равномерно, но с другой скоростью в течение другого промежутка времени, затем снова меняет скорость и т. д. Например, на рис. 26 показан график движения, в котором тело двигалось в течение первого часа со скоростью 20 км/ч, в течение второго часа - со скоростью 40 км/ч и в течение третьего часа - со скоростью 15 км/ч.

Задание: 12.8. Постройте график пути для движения, в котором за последовательные часовые промежутки тело имело скорости 10, -5, 0, 2, -7 км/ч. Чему равно суммарное перемещение тела?

Построение графиков используют, чтобы показать зависимость одной величины от другой. При этом на одной оси откладывают изменение одной величины, а на другой оси - изменение другой величины. При прямолинейном равномерном движении скорость тела остается постоянной, меняются только время и зависимый от него пройденный путь. Поэтому наибольший интерес для такого движения представляет график, отражающий зависимость пути от времени.

При построении такого графика на одной из осей координатной плоскости отмечается изменение времени (t). Например, 1 с, 2 с, 3 с и т. д. Пусть это будет ось x . На другой оси (в данном случае y ) отмечается изменение пройденного пути. Например, 10 м, 20 м, 30 м и т. д.

Начало системы координат принимается за начало движения. Это точка старта, в которой промежуток времени, потраченный на движение, равен нулю, и пройденный путь также равен нулю. Это первая точка графика зависимости пути от времени.

Далее на координатной плоскости находят вторую точку графика. Для этого для какого-либо времени пути находят пройденный за это время путь. Если скорость тела равна 30 м/с, то это может быть точка с координатами (1; 30) или (2; 60) и так далее.

После того, как вторая точка отмечена, проводят луч через две точки (первая - начало координат). Начало луча - это начало координат. Данный луч и является графиком зависимости пути от времени при прямолинейном равномерном движении. У луча нет конца, это говорит о том, что чем больше затраченное на путь время, тем больше будет пройденный путь.

Вообще говорят, что графиком зависимости пути от времени является прямая, проходящая через начало координат.

Чтобы доказать, что графиком является прямая, а, допустим, не ломаная линия, можно построить ряд точек на координатной плоскости. Например, если скорость равна 5 км/ч, то на координатной плоскости можно отметить точки (1; 5), (2; 10), (3; 15), (4; 20). Затем соединить их последовательно между собой. Вы увидите, что получится прямая.

Чем больше скорость тела, тем быстрее увеличивается пройденный путь. Если на одной и той же координатной плоскости начертить зависимости пути от времени для двух тел, движущихся с разными скоростями, то график тела, которое движется быстрее, будет иметь больший угол с положительным направлением оси времени.

Например, если одно тело движется со скоростью 10 км/ч, а второе - 20 км/ч, то на координатной плоскости можно отметить точки (1; 10) для одного тела и (1; 20) для другого. Понятно, что вторая точка находится дальше от оси времени, и прямая через нее образует больший угол, чем прямая через точку, отмеченную для первого тела.

Графики зависимости пути от времени при прямолинейном равномерном движении можно использовать для быстрого нахождения затраченного времени по известному значению пройденного пути или пути по известному времени. Для этого надо провести перпендикулярную линию из значения координатной оси, которое известно, до пересечения с графиком. Далее из полученной точки пересечения провести перпендикуляр к другой оси, получив тем самым искомое значение.

Кроме графиков зависимости пути от времени, можно построить графики зависимости пути от скорости и скорости от времени. Однако, так как при прямолинейном равномерном движении скорость постоянна, эти графики представляют собой прямые, параллельные осям пути или времени и проходящие на уровне заявленной скорости.

Инструкция

Рассмотрим функцию f(x) = |x|. Для начала этой без знака модуля, то есть график функции g(x) = x. Этот график является прямой, проходящей через начало координат и угол между этой прямой и положительным направлением оси абсцисс составляет 45 градусов.

Так как модуль величина неотрицательная, то ту часть , которая находится ниже оси абсцисс необходимо зеркально отобразить относительно нее. Для функции g(x) = x получим, что график после такого отображения станет похож на V. Этот новый график и будет являться графической интерпретацией функции f(x) = |x|.

Видео по теме

Обратите внимание

График модуля функции никогда не будет находится в 3 и 4 четверти, так как модуль не может принимать отрицательных значений.

Полезный совет

Если в функции присутствуют несколько модулей, то их нужно раскрывать последовательно, а затем накладывать друг на друга. Результат и будет искомым графиком.

Источники:

  • как построить график функции с модулями

Задачи на кинематику, в которых необходимо вычислить скорость , время или путь равномерно и прямолинейно движущихся тел, встречаются в школьном курсе алгебры и физики. Для их решения найдите в условии величины, которые можно между собой уравнять. Если в условии требуется определить время при известной скорости, воспользуйтесь следующей инструкцией.

Вам понадобится

  • - ручка;
  • - бумага для записей.

Инструкция

Самый простой случай – движение одного тела с заданной равномерной скорость ю. Известно расстояние, которое тело прошло. Найдите в пути: t = S/v, час, где S – расстояние, v – средняя скорость тела.

Второй - на встречное движение тел. Из пункта А в пункт В движется автомобиль со скорость ю 50 км/ч. Навстречу ему из пункта B одновременно выехал мопед со скорость ю 30 км/час. Расстояние между пунктами А и В 100 км. Требуется найти время , через которое они встретятся.

Обозначьте точку встречи К. Пусть расстояние АК, которое автомобиль, будет х км. Тогда путь мотоциклиста составит 100-х км. Из условия задачи следует, что время в пути у автомобиля и мопеда одинаково. Составьте уравнение: х/v = (S-x)/v’, где v, v’ – и мопеда. Подставив данные, решите уравнение: x = 62,5 км. Теперь время : t = 62,5/50 = 1,25 часа или 1 час 15 минут.

Составьте уравнение, аналогично предыдущему. Но в этом случае время мопеда в пути будет на 20 минут , чем у автомобиля. Для уравнивания частей, вычтите одну треть часа из правой части выражения: х/v = (S-x)/v’-1/3. Найдите х – 56,25. Вычислите время : t = 56,25/50 = 1,125 часа или 1 час 7 минут 30секунд.

Четвертый пример – задача на движение тел в одном направлении. Автомобиль и мопед с теми же скоростями двигаются из точки А. Известно, что автомобиль выехал на полчаса позже. Через какое время он догонит мопед?

В этом случае одинаковым будет расстояние, которое проехали транспортные средства. Пусть время в пути автомобиля будет x часов, тогда время в пути мопеда будет x+0,5 часов. У вас получилось уравнение: vx = v’(x+0,5). Решите уравнение, подставив значение , и найдите x – 0,75 часа или 45 минут.

Пятый пример – автомобиль и мопед с теми же скоростями двигаются в одном направлении, но мопед выехал из точки В, находящейся на расстоянии 10 км от точки А, на полчаса раньше. Вычислить, через какое время после старта автомобиль догонит мопед.

Расстояние, которое проехал автомобиль, на 10 км больше. Прибавьте эту разницу к пути мотоциклиста и уравняйте части выражения: vx = v’(x+0,5)-10. Подставив значения скорости и решив его, вы получите : t = 1,25 часа или 1 час 15 минут.

Источники:

  • какая скорость машины времени

Инструкция

Рассчитайте среднюю тела, движущегося равномерно на протяжении участка пути. Такая скорость вычисляется проще всего, поскольку она не изменяется на всем отрезке движения и равняется средней . Можно это в виде : Vрд = Vср, где Vрд – скорость равномерного движения , а Vср – средняя скорость .

Вычислите среднюю скорость равнозамедленного (равноускоренного) движения на данном участке, для чего необходимо сложить начальную и конечную скорость . Разделите на два полученный результат, который и являться средней скорость ю. Можно записать это более наглядно в качестве формулы: Vср = (Vн + Vк)/2, где Vн представляет

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда a x = a, v x = v. Следовательно,

На рисунке 6.3 изображен график зависимости v(t).

1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at 2 /2. (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения s x от времени. В данном случае проекция ускорения на ось x положительна, поэтому s x = l, a x = a. Таким образом, из формулы (2) следует:

s x = a x t 2 /2. (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда s x < 0. А путь отрицательным быть не может!

4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?


Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

v x = v 0x + a x t, (4)

где v 0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v 0x > 0, a x > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости v x (t) при v 0x > 0, a x > 0.

5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

s x = v 0x + a x t 2 /2. (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения s x соотношением

s x = x – x 0 ,

где x 0 - начальная координата тела. Следовательно,

x = x 0 + s x , (6)

Из формул (5), (6) получаем:

x = x 0 + v 0x t + a x t 2 /2. (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t 2 .
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v 0 , конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

Подставим это выражение в формулу (2) для пути:

l = at 2 /2 = a/2(v/a) 2 = v 2 /2a. (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь l т = v 0 2 /2a, где v 0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v 0 и путь, пройденный при разгоне с места до скорости v 0 с тем же по модулю ускорением a, одинаковы.

9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с 2 . Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с 2 . Сравните найденные вами значения тормозного пути с длиной классной комнаты.

10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v 2 – v 0 2)/2a, если скорость тела увеличивается;
б) l = (v 0 2 – v 2)/2a, если скорость тела уменьшается.


11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

s x = (v x 2 – v 0x 2)/2ax (10)

12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?


Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости v x (t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t 1 и t 2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t 1 и t 2 составьте систему двух уравнений с двумя неизвестными v 0 и a.
в) Решив эту систему уравнений, выразите v 0 и a через b, t 1 и t 2 .
г) Выразите весь пройденный шариком путь l через b, t 1 и t 2 .
д) Найдите числовые значения v 0 , a и l при b = 30 см, t 1 = 1с, t 2 = 2 с.
е) Постройте графики зависимости v x (t), s x (t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

Выбор редакции
Маленькие круглые булочки, напоминающие кексики, выпекающиеся в специальных силиконовых формах, называются маффинами. Они могут быть...

И снова делюсь с вами, дорогие мои, рецептом приготовления домашнего хлеба, да не простого, а тыквенного! Могу сказать, что отношение к...

Отварите картофель для начинки. Выберите три средних клубня, хорошо промойте от земли и другой грязи, поместите в холодную воду,...

Любая хозяйка в преддверии и во время поста сталкивается с насущным вопросом: как организовать питание семьи таким образом, чтобы...
Описание Гречневый пудинг станет для вас настоящим открытием в области десертов. Требует такое лакомство минимального набора...
Существует множество рецептур приготовления домашнего печенья из пшеничной, овсяной, и даже, гречневой муки, но я сегодня хочу вам...
Кальмаров для салата готовят тремя основными способами - отваривают целой тушкой, нарезают полосками и отваривают, добавляют в салат...
Прекрасным легким блюдом, отлично подходящим для праздничного стола, считается салат с кальмарами. Экспериментируя с различными...
Крупы очень полезны для здоровья человека. Пшено — крупа, получаемая путём обдирки от чешуек культурного вида проса. Она богато белком,...