Магнитное поле прямолинейного проводника с током. Про магнитное поле, соленоиды и электромагниты


Электрический ток, протекающий по проводнику, создает вокруг этого проводника магнитное поле (рис. 7.1). Направление возникающего магнитного поля определяется направлением тока.
Способ обозначения направления электрического тока в проводнике показан на рис. 7.2: точку на рис. 7.2(а) можно воспринимать как острие стрелки, указывающей направление тока к наблюдателю, а крестик – как хвост стрелки, указывающей направление тока от наблюдателя.
Магнитное поле, возникающее вокруг проводника с током, показано на рис. 7.3. Направление этого поля легко определяется с помощью правила правого винта (или правила буравчика): если острие буравчика совместить с направлением тока, то при его завинчивании направление вращения рукоятки будет совпадать с направлением магнитного поля.

Рис. 7.1. Магнитное поле вокруг проводника с током.


Рис. 7.2. Обозначение направления тока (а) к наблюдателю и (б) от на-блюдателя.


Поле, создаваемое двумя параллельными проводниками

1. Направления токов в проводниках совпадают. На рис. 7.4(а) изображены два параллельных проводника, расположенные на некотором расстоянии друг от друга, причем магнитное поле каждого проводника изображено отдельно. В промежутке между проводниками создаваемые ими магнитные поля противоположны по направлению и компенсируют друг друга. Результирующее магнитное поле показано на рис. 7.4(б). Если из-менить направление обоих токов на обратное, то изменится на обратное и направление результирующего магнитного поля (рис. 7.4(б)).


Рис. 7.4. Два проводника с одинаковыми направлениями токов (а) и их результирующее магнитное поле (6, в).

2. Направления токов в проводниках противоположны. На рис. 7.5(а) показаны магнитные поля для каждого проводника по отдельности. В этом случае в промежутке между проводниками их поля суммируются и здесь результирующее поле (рис. 7.5(б)) максимально.


Рис. 7.5. Два проводника с противоположными направлениями токов (а) и их результирующее магнитное поле (б).


Рис. 7.6. Магнитное поле соленоида.

Соленоид – это цилиндрическая катушка, состоящая из большого числа витков проволоки (рис. 7.6). Когда по виткам соленоида протекает ток, соленоид ведет себя как полосовой магнит с северным и южным полюсами. Создаваемое им магнитное поло ничем не отличается от ноля постоянного магнита. Магнитное поле внутри соленоида можно усилить, намотав катушку на магнитный сердечник из стали, железа или друго¬го магнитного материала. Напряженность (величина) магнитного поля соленоида зависит также от силы пропускаемого электрического тока и числа витков.

Электромагнит

Соленоид можно использовать в качестве электромагнита, при этом сердечник делается из магнитомягкого материала, например ковкого железа. Соленоид ведет себя как магнит только в том случае, когда через катушку протекает электрический ток. Электромагниты применяются в электрических звонках и реле.

Проводник в магнитном поле

На рис. 7.7 изображен проводник с током, помещенный в магнитное поле. Видно, что магнитное поле этого проводника складывается с магнитным полем постоянного магнита в зоне выше проводника и вычитается в зоне ниже проводника. Таким образом, более сильное магнитное поле находится выше проводника, а более слабое - ниже (рис. 7.8).
Если изменить направление тока в проводнике на обратное, то форма магнитного поля останется прежней, но его величина будет больше под проводником.

Магнитное поле, ток и движение

Если проводник с током поместить в магнитное поле, то на него будет действовать сила, которая пытается передвинуть проводник из области более сильного поля в область более слабого, как показано на рис. 7.8. Направление этой силы зависит от направления тока, а также от направления магнитного ноля.


Рис. 7.7. Проводник с током в магнитном поле.


Рис. 7.8. Результирующее поле

Величина силы, действующей на проводник с током, определяется как величиной магнитного поля, так и силой гика, протекающего через этот проводник.
Движение проводника, помещенного в магнитное поле, при пропускании через него тока называется принципом двигателя. На этом принципе основана работа электродвигателей, магнитоэлектрических измерительных приборов с подвижной катушкой и других устройств. Если провод ник перемещать в магнитном поле, в нем генерируется ток. Это явление называется принципом генератора. На этом принципе основана работа генераторов постоянного и переменного тока.

До сих пор рассматривалось магнитное поле, связанное только с постоянным электрическим током. В этом случае направление магнитного поля неизменно и определяется направлением постоянного дока. При протекании переменного тока создается переменное магнитное поле. Если отдельную катушку поместить в это переменное поле, то в ней будет индуцироваться (наводиться) ЭДС (напряжение). Или если две отдельные катушки расположить в непосредственной близости друг к другу, как показано на рис. 7.9. и приложить переменное напряжение к одной обмотке (W1), то между выводами второй обмотки (W2) будет возникать новое переменное напряжение (индуцированная ЭДС). Это принцип работы трансформатора .


Рис. 7.9. Индуцированная ЭДС.

В этом видео рассказывается о понятии магнетизма и электромагнетизма:

Рассмотрим прямолинейный проводник (рис.3.2) , который является частью замкнутой электрической цепи. По закону Био-Савара-Лапласа вектор магнитной индукции
поля, создаваемого в точкеА элементом проводника с токомI , имеет значение
, где- угол между векторамии. Для всех участковэтого проводника векторыилежат в плоскости чертежа, поэтому в точкеА все векторы
, создаваемые каждым участком, направлены перпендикулярно к плоскости чертежа (к нам). Векторопределяется по принципу суперпозиции полей:

,

его модуль равен:

.

Обозначим расстояние от точки А до проводника . Рассмотрим участок проводника
. Из точкиА проведем дугу С D радиуса ,
– мал, поэтому
и
. Из чертежа видно, что
;
, но
(CD =
) Поэтому имеем:

.

Для получаем:

где и- значения угла для крайних точек проводникаMN .

Если проводник бесконечно длинный, то
,
. Тогда

    индукция в каждой точке магнитного поля бесконечно длинного прямолинейного проводника с током обратно пропорциональна кратчайшему расстоянию от этой точки до проводника .

3.4. Магнитное поле кругового тока

Рассмотрим круговой виток радиуса R , по которому течет ток I (рис. 3.3). По закону Био- Савара- Лапласа индукция
поля, создаваемого в точкеО элементом витка с током равна:

,

причём
, поэтому
, и
. С учётом сказанного получаем:

.

Все векторы
направлены перпендикулярно к плоскости чертежа к нам, поэтому индукция

напряженность
.

Пусть S – площадь, охватываемая круговым витком,
. Тогда магнитная индукция в произвольной точке оси кругового витка с током:

,

где – расстояние от точки до поверхности витка. Известно, что
- магнитный момент витка. Его направление совпадает с векторомв любой точке на оси витка, поэтому
, и
.

Выражение для по виду аналогично выражению для электрического смещения в точках поля, лежащих на оси электрического диполя достаточно далеко от него:

.

Поэтому магнитное поле кольцевого тока часто рассматривают как магнитное поле некоторого условного «магнитного диполя», положительным (северным) полюсом считают ту сторону плоскости витка, из которой магнитные силовые линии выходят, а отрицательным (южным) – ту, в которую входят.

Для контура тока, имеющего произвольную форму:

,

где - единичный вектор внешней нормали к элементуповерхностиS , ограниченной контуром. В случае плоского контура поверхность S – плоская и все векторы совпадают.

3.5. Магнитное поле соленоида

Соленоид - это цилиндрическая катушка с большим числом витков провода. Витки соленоида образуют винтовую линию. Если витки расположены вплотную, то соленоид можно рассматривать как систему последовательно соединенных круговых токов. Эти витки (токи) имеют одинаковый радиус и общую ось (рис.3.4).

Рассмотрим сечение соленоида вдоль его оси. Кружками с точкой будем обозначать токи, идущие из-за плоскости чертежа к нам, а кружочком с крестиком - токи, идущие за плоскость чертежа, от нас. L – длина соленоида, n число витков, приходящихся на единицу длины соленоида; - R - радиус витка. Рассмотрим точку А , лежащую на оси
соленоида. Ясно, что магнитная индукцияв этой точке направлена вдоль оси
и равна алгебраической сумме индукций магнитных полей, создаваемых в этой точке всеми витками.

Проведем из точки А радиус – вектор к какому-либо витку. Этот радиус-вектор образует с осью
уголα . Ток, текущий по этому витку, создает в точке А магнитное поле с индукцией

.

Рассмотрим малый участок
соленоида, он имеет
витков. Эти витки создают в точкеА магнитное поле, индукцию которого

.

Ясно, что расстояние по оси от точки А до участка
равно
; тогда
.Очевидно,
, тогда

Магнитная индукция полей, создаваемых всеми витками, в точке А равна

Напряженность магнитного поля в точке А
.

Из рис.3. 4 находим:
;
.

Таким образом, магнитная индукция зависит от положения точки А на оси соленоида. Она

максимальна в середине соленоида:

.

Если L >> R , то соленоид можно считать бесконечно длинным, в этом случае
,
,
,
; тогда

;
.

На одном из концов длинного соленоида
,
или
;
,
,
.

Электромагнитные явления

Электромагнитные явления отражают связь электрического тока с магнитным полем. Все их физические законы хорошо известны, и мы не будем стараться поправить их; наша цель иная: объяснить физическую природу этих явлений.

Одно нам уже ясно: ни электричество ни магнетизм не могут быть без электронов; и в этом уже проявляется электромагнетизм. Говорили мы и о том, что катушка с током порождает магнитное поле . Задержимся на последнем явлении и уточним - как оно происходит.

Будем смотреть на катушку с торца, и пусть электрический ток по ней идет против часовой стрелки. Ток представляет собой поток электронов, скользящий по поверхности проводника (только на поверхности - открытые присасывающие желоба). Поток электронов будет увлекать за собой прилегающий эфир, и он начнет также двигаться против часовой стрелки. Скорость прилегающего к проводнику эфира будет определяться скоростью электронов в проводнике, а она, в свою очередь, будет зависеть от перепада эфирного давления (от электрического напряжения на катушке) и от проходного сечения проводника. Увлекаемый током эфир будет затрагивать соседние слои, и они также будут двигаться внутри и вне катушки по кругу. Скорость закрученного эфира распределится следующим образом: наибольшее ее значение, разумеется, - в районе витков; при смещении к центру она уменьшается по линейному закону, так что в самом центре она окажется нулевой; при удалении от витков на периферию скорость также будет уменьшаться, но не по линейному, а по более сложному закону.

Закрученное током макрозавихрение эфира начнет ориентировать электроны таким образом, что все они повернутся до параллельности осей вращения с осью катушки; при этом внутри катушки они будут вращаться против часовой стрелки, а за ее переделами - по часовой; одновременно электроны будут стремиться к соосному расположению, то есть будут собираться в магнитные шнуры. Процесс ориентирования электронов займет какое-то время, и по завершению его внутри катушки возникает магнитный пучок с северным полюсом в нашу сторону, а за пределами катушки, наоборот, северный полюс окажется удаленным от нас. Таким образом, мы доказали справедливость известного в электротехнике правила винта или буравчика, устанавливающего связь между направлением тока и направлением рожденного им магнитного поля.

Магнитная сила (напряженность) в каждой точке магнитного поля определится изменением скорости эфира в этой точке, то есть производной от скорости по удалению от витков катушки : чем круче изменение скорости, тем больше напряженность. Если соотносить магнитную силу катушки с ее электрическими и геометрическими параметрами, то она имеет прямую зависимость от величины тока и обратную - от диаметра катушки. Чем больше ток и чем меньше диаметр, тем больше возможностей собрать электроны в шнуры определенного направления вращения и тем большей окажется магнитная сила катушки. О том, что напряженность магнитного поля может усиливаться или ослабляться средой, уже говорилось.



Процесс преобразования электричества постоянного тока в магнетизм - не обратим: если в катушку поместить магнит, то ток в ней не возникает. Энергия макрозавихрения, существующего вокруг магнита, настолько мала, что не в силах заставить смещаться электроны по виткам при самых малых сопротивлениях для них. Еще раз напомним, что в обратном процессе макрозавихрение эфира, выполняющее роль посредника, лишь ориентировало электроны, и не более того, то есть только управляло магнитным полем, а сила поля определялась количеством однонаправленных магнитных шнуров.

где r – расстояние от оси проводника до точки.

Согласно предположению Ампера в любом теле существуют микроскопи­ческие токи (микротоки), обусловленные движением электронов в атомах. Они создают свое магнитное поле и ориентируются в магнитных полях макротоков. Макроток - это ток в проводнике под действием ЭДС или разности потенциа­лов. Вектор магнитной индукции характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками. Магнитное поле макротоков описывается также и вектором напряженности. В случае однородной изо­тропной среды вектор магнитной индукции связан с вектором напряженности соотношением

(5)

где μ 0 - магнитная постоянная; μ- магнитная проницаемость среды, показы­вающая, во сколько раз магнитное поле макротоков усиливается или ослабляет­ся за счет микротоков среды. Иначе говоря, μ показывает, во сколько раз век­тор индукции магнитного поля в среде больше или меньше, чем в вакууме.

Единица напряженности магнитного поля - А/м. 1А/м - напряженность такого поля, магнитная индукция которого в вакууме равна
Тл. Земля пред­ставляет собой огромный шарообразный магнит. Действие магнитного поля Земли обнаруживается на ее поверхности и в окружающем пространстве.

Магнитным полюсом Земли называют ту точку на ее поверхности, в кото­рой свободно подвешенная магнитная стрелка располагается вертикально. По­ложения магнитных полюсов подвержены постоянным изменениям, что обусловлено внутренним строением нашей планеты. Поэтому магнитные полюса не совпадают с географическими. Южный полюс магнитного поля Земли рас­положен у северных берегов Америки, а Северный полюс - в Антарктиде. Схе­ма силовых линий магнитного поля Земли показана на рис. 5 (пунктиром обо­значена ось вращения Земли): - горизонтальная составляющая индукции магнитного поля; N r , S r - географические полюсы Земли; N, S - магнитные по­люсы Земли.

Направление силовых линий магнитного поля Земли определяется с по­мощью магнитной стрелки. Если свободно подвесить магнитную стрелку, то она установится по направлению касательной к силовой линии. Так как маг­нитные полюсы находятся внутри Земли,магнитная стрелка устанавливается не горизонтально, а под некоторым углом α к плоскости горизонта. Этот угол α называют магнитным наклонением. С приближением к магнитному полюсу угол α увеличивается. Вертикальная плоскость, в которой расположена стрелка, называется плоскостью магнитного меридиана, а угол между магнитным игеографическим меридианами - магнитным склонением. Силовой характеристикой магнитного поля, как уже отмечалось, является магнитная индукция В. Ее значение невелико и изменяется от 0,42∙10 -4 Тл на экваторе до 0,7∙10 -4 Тл у магнитных полюсов.

Вектор индукции магнитного поля Земли можно разделить на две состав­ляющие: горизонтальную и вертикальную
(рис. 5). Укрепленная навертикальной оси магнитная стрелка устанавливается в направлении горизон­тальной составляющей Земли . Магнитное склонение, наклонение α и горизонтальная составляющая магнитного поля являются основными пара­метрами магнитного поля Земли.

Значение определяют магнитометрическим методом, который основан на взаимодействии магнитного поля катушки с магнитной стрелкой. Прибор, называемый тангенс-буссолью, представляет собой небольшую буссоль (ком­пас с лимбом, разделенным на градусы), укрепленную внутри катушки 1 из не­скольких витков изолированной проволоки.

Катушка расположена в вертикальной плоскости. Она создает добавочное магнитное поле к (диаметр катушки и число витков указываются на приборе).

В центре катушки помещается магнитная стрелка 2. Она должна быть не­большой, чтобы можно было принимать индукцию, действующую на ее полю­сы, равной индукции в центре кругового тока. Плоскость контура катушки ус­танавливается так, чтобы она совпадала с направлением стрелки и была пер­пендикулярна горизонтальной составляющей земного поля r . Под действием r индукции поля Земли и индукции поля катушки стрелка устанавливается по направлению равнодействующей индукции р (рис. 6 а, б).

Из рис. 6 видно, что

(6)

Индукция магнитного поля катушки в центре –

7)

где N - число витков катушки; I - ток, идущий по ней; R - радиус катушки. Из (6) и (7) следует, что

(8)

Важно понять, что формула (8) является приближенной, т.е. она верна только в том случае, когда размер магнитной стрелки намного меньше радиуса контура R. Минимальная ошибка при измерении фиксируется при угле откло­нения стрелки ≈45°. Соответственно этому и подбирается сила тока в катушке тангенс-буссоли.

Порядок выполнения работы

    Установить катушку тангенс-буссоли так, чтобы ее плоскость совпала с на­ правлением магнитной стрелки.

    Собрать цепь по схеме (рис. 7).

3. Включить ток и измерить углы отклонения у концов стрелки
и
. Данные занести в таблицу. Затем с помощью переключателя П изменить направление тока на противоположное, не меняя величины силы тока, и измерить углы отклонения у обоих концов стрелки
и
вновь. Данные занести в таблицу. Таким образом, устраняется ошибка определения угла, связанная с несовпадением плоскости катушки тангенс-буссоли с плоскостью магнитно­го меридиана. Вычислить

Результаты измерений I и занести в таблицу 1.

Таблица 1

    Вычислить В ср. по формуле

где n - число измерений.

    Найти доверительную границу общей погрешности по формуле

,

Где
- коэффициент Стьюдента (при=0,95 иn=5
=2,8).

    Результаты записать в виде выражения

.

Контрольные вопросы

    Что называется индукцией магнитного поля? Какова единица ее измерения? Как определяется направление вектора магнитной индукции?

    Что называется напряженностью магнитного поля? Какова ее связь с магнитной индукцией?

    Сформулировать закон Био-Савара-Лапласа, вычислить на его основе ин­дукцию магнитного поля в центре кругового тока, индукцию поля прямого тока и соленоида.

    Как определяется направление индукции магнитного поля прямого и круго­вого токов?

    В чем заключается принцип суперпозиции магнитных полей?

    Какое поле называют вихревым?

    Сформулируйте закон Ампера.

    Расскажите об основных параметрах магнитного поля Земли.

    Каким образом можно определить направление силовых линий магнитного поля Земли?

    Почему измерение горизонтальной составляющей индукции магнитного по­ ля выгоднее проводить при угле отклонения стрелки в 45°?

ЛАБОРАТОРНАЯ РАБОТА №7

Пусть вдоль осиOZ расположен бесконечно длинный проводник, по которому течёт ток с силой . А сила тока это что такое?
,
- заряд, который пересекает поверхностьS за время
. Система обладает осевой симметрией. Если мы введём цилиндрические координатыr ,  , z , то цилиндрическая симметрия означает, что
и, кроме того,
, при смещении вдоль осиOZ , мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия
и
. Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

Вот ортогональная плоскость,

вот окружность радиуса r ,

я возьму тут касательный вектор, вектор, направленный вдоль , касательный вектор к окружности.

Тогда,
,
где
.

В качестве замкнутого контура выбираем окружность радиуса r = const . Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности., где – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль:
. Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величинаВ убывает как при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии
(R – радиус кривизны проводника), будет справедлива эта формула.

Магнитное поле, создаваемое произвольным проводником с током.

Закон Био-Савара.

Пусть мы имеем произвольный проводник с током, и нас интересует магнитное поле, создаваемое куском этого проводника в данной точке. Как, кстати, в электростатике находили мы электрическое поле, создаваемое каким-то распределением заряда? Распределение разбивали на малые элементы и вычисляли в каждой точке поле от каждого элемента (по закону Кулона) и суммировали. Такая же программа и здесь. Структура магнитного поля сложнее, чем электростатическое, кстати, оно не потенциально, замкнутое магнитное поле нельзя представить как градиент скалярной функции, у него другая структура, но идея та же самая. Разбиваем проводник на малые элементы. Вот я взял маленький элемент
, положение этого элемента определяется радиус-вектором, а точка наблюдения задаётся радиус-вектором. Утверждается, что этот элемент проводника создаст в этой точке индукциюпо такому рецепту:
. Откуда берётся этот рецепт? Его нашли в своё время экспериментально, трудно мне, кстати, представить, как это можно было экспериментально найти такую достаточно сложную формулу с векторным произведением. На самом деле это следствие четвёртого уравнения Максвелла
. Тогда поле, создаваемое всем проводником:
, или, мы можем написать теперь интеграл:
. Понятно, что вычислять такой интеграл для произвольного проводника занятие не очень приятное, но в виде суммы это нормальная задача для компьютера.

Пример. Магнитное поле кругового витка с током.

Пусть в плоскостиYZ располагается проволочный виток радиуса R, по которому течёт ток силы . Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие:

Общая картина силовых линий тоже просматривается (рис.7.10 ).




По идее, нас интересовало бы поле
, но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х ,0,0).

Направление вектора определяется векторным произведением
. Векторимеет две составляющие:
и. Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль.
. А теперь пишем:
,
=, а
.
, и, наконец 1) ,
.

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна:
.

Поле длинного соленоида.

Соленоидом называется катушка, на которую намотан проводник.

Магнитное поле от витков складывается, и не трудно догадаться, что структура силовых линий поля такая: они внутри идут густо, а дальше разреженно. То есть для длинного соленоида снаружи будем считать=0, а внутри соленоида=const . Внутри длинного соленоида, ну, в окрестности. Скажем, его середины, магнитное поле практически однородно, а вне соленоида это поле мало. Тогда мы можем найти это магнитное поле внутри следующим образом: вот я беру такой контур (рис.7.13 ), а теперь пишем:
1)


.

- это полный заряд. Эту поверхность протыкают витки

(полный заряд)=
(число витков, протыкающих эту поверхность).

Мы получим такое равенство из нашего закона:
, или

.

Поле на большом расстоянии от ограниченного распределения тока.

Магнитный момент

Имеется в виду, что в ограниченной области пространства текут токи, тогда есть простой рецепт для нахождения магнитного поля, которое создаёт это ограниченное распределение. Ну, кстати, под это понятие ограниченное пространство подпадает любой источник, поэтому тут никакого сужения нет.

Если характерный размер системы , то
. Напомню, что мы решали аналогичную проблему для электрического поля, создаваемого ограниченным распределением заряда, и там появилось понятие дипольного момента, и моментов более высокого порядка. Решать эту задачу я здесь не буду.

По аналогии (как делалось в электростатике) можно показать, что магнитное поле от ограниченного распределения на больших расстояниях подобно электрическому полю диполя. То есть структура этого поля такая:

Распределение характеризуется магнитным моментом .Магнитный момент
, где– плотность тока или, если учесть, что мы имеем дело с движущимися заряженными частицами, то вот эту формулу для сплошно среды мы можем выразить через заряды частиц таким образом:
. Что эта сумма выражает? Повторяю, распределение тока создаётся тем, что движутся эти заряженные частицы. Радиус-векторi -ой частицы векторно умножается на скорость i -ой частицы и всё это умножается на заряд этой i -ой частицы.

Такая конструкция, кстати, у нас в механике была. Если вместо заряда без множителя написать массу частицы, то, что это будет изображать? Момент импульса системы.

Если мы имеем частицы одного сорта (
, например, электроны), то тогда мы можем написать

. Значит, если ток создаётся частицами одного сорта, то магнитный момент связан просто с моментом импульса этой системы частиц.

Магнитное поле , создаваемое этим магнитным моментом равно:

(8.1 )

Магнитный момент витка с током

Пусть у нас имеется виток и по нему течёт ток силы. Вектор отличен от нуля в пределах витка. Возьмём элемент этого витка,
, гдеS – поперечное сечение витка, а – единичный касательный вектор. Тогда магнитный момент определён так:
. А что такое
? Это вектор, направленный вдоль вектора нормали к плоскости витка. А векторное произведение двух векторов – это удвоенная площадь треугольника, построенного на этих векторах. ЕслиdS – площадь треугольника, построенного на векторах и, то
. Тогда мы пишем магнитный момент равняется. Значит,

(магнитный момент витка с током)=(сила тока)(площадь витка)(нормаль к витку) 1) .

А теперь мы формулу (8.1 ) применим для витка с током и сопоставим с тем, что мы добыли в прошлый раз, просто для проверки формулы, поскольку формулу эту я слепил по аналогии.

Пусть мы имеем в начале координат виток произвольной формы, по которому течёт ток силы , тогда поле в точке на расстоянии х равно: (
). Для круглого витка
,
. На прошлой лекции мы находили магнитное поле круглого витка с током, при
эти формулы совпадают.

На больших расстояниях от любого распределения тока магнитное поле находится по формуле (8.1 ), а всё это распределение характеризуется одним вектором, который называется магнитный момент. Кстати, простейший источник магнитного поля это магнитный момент. Для электрического поля простейший источник это монополь, для электрического поля следующий по сложности это электрический диполь, а для магнитного поля всё начинается с этого диполя или магнитного момента. Это, ещё раз обращаю внимание, постольку, поскольку нет этих самых монополей. Был бы монополь, тогда было бы всё также как в электрическом поле. А так у нас простейший источник магнитного поля это магнитный момент, аналог электрического диполя. Наглядный пример магнитного момента – постоянный магнит. Постоянный магнит обладает магнитным моментом, и на большом расстоянии его поле имеет такую структуру:

Сила, действующая на проводник с током в магнитном поле

Мы видели, что на заряженную частицу действует сила, равная
. Ток в проводнике есть результат движения заряженных частиц тела, то есть равномерно размазанного заряда в пространстве нет, заряд локализован в каждой частице. Плотность тока
. Наi -ую частицу действует сила
.

Выберем элемент объёма
и просуммируем силы, действующие на все частицы этого элемента объёма
. Сила, действующая на все частицы в данном элементе объёма, определяется как плотность тока на магнитное поле и на величину элемента объёма. А теперь перепишем её в дифференциальном виде:
, отсюда
– этоплотность силы , сила, действующая на единицу объёма. Тогда мы получим общую формулу для силы:
.

Обычно ток течёт по линейным проводникам, редко мы сталкиваемся с случаями, когда ток размазан как-то по объёму. Хотя, между прочим, Земля имеет магнитное поле, а от чего это поле? Источник поля это магнитный момент, это означает, что Земля обладает магнитным моментом. А это означает, что тот рецепт для магнитного момента показывает, что должны быть какие-то токи внутри Земли, они по необходимости должны быть замкнутыми, потому что не может быть стационарного разомкнутого поля. Откуда эти токи, что их поддерживает? Я не специалист в земном магнетизме. Какое-то время назад определённой модели этих токов ещё не было. Они могли быть там когда-то индуцированы и ещё не успели там затухнуть. На самом деле, ток можно возбудить в проводнике, и потом он быстро сам кончается за счёт поглощения энергии, выделения тепла и прочего. Но, когда мы имеем дело с такими объёмами как Земля, то там время затухания этих токов, однажды каким-то механизмом возбуждённых, это время затухания может быть очень длительным и длиться геологические эпохи. Может быть, так оно и есть. Ну, скажем, мелкий объект типа Луны имеет очень слабое магнитное поле, это означает, что оно затухло там уже, скажем, магнитное поле Марса тоже значительно слабее поля Земли, потому что и марс меньше Земли. Это я к чему? Конечно, есть случаи, когда токи текут в объёмах, но то, что мы здесь на Земле имеем это обычно линейные проводники, поэтому эту формулу сейчас трансформируем применительно к линейному проводнику.

Пусть имеется линейный проводник, ток течёт с силой. Выберем элемент проводника , объём этого элементаdV ,
,
. Сила, действующая на элемент проводника
перпендикулярна плоскости треугольника, построенного на векторахи, то есть направлена перпендикулярно к проводнику, а полная сила находится суммированием. Вот, две формулы решают эту задачу.

Магнитный момент во внешнем поле

Магнитный момент сам создаёт поле, сейчас мы собственное его поле не рассматриваем, а нас интересует, как ведёт себя магнитный момент, помещённый во внешнее магнитное поле. На магнитный момент действует момент силы, равный
. Момент силы будет направлен перпендикулярно к доске, и этот момент будет стремиться развернуть магнитный момент вдоль силовой линии. Почему стрелка компаса показывает на северный полюс? Ей, конечно, нет дела до географического полюса Земли, стрелка компаса ориентируется вдоль силовой линии магнитного поля, которая, в силу случайных причин, кстати, направлена примерно по меридиану. За счёт чего? А на неё действует момент. Когда стрелка, магнитный момент, совпадающий по направлению с самой стрелкой, не совпадает с силовой линией, появляется момент, разворачивающий её вдоль этой линии. Откуда у стрелки компаса берётся магнитный момент, это мы ещё обсудим.

Кроме того, на магнитный момент действует сила, равная
. Если магнитный момент направлен вдоль, то сила втягивает магнитный момент в область с большей индукцией. Эти формулы похожи на то, как действует электрическое поле на дипольный момент, там тоже дипольный момент ориентируется вдоль поля и втягивается в область с большей напряжённостью. Теперь мы можем рассмотреть вопрос о магнитном поле в веществе.

Магнитное поле в веществе

Атомы могут обладать магнитными моментами. Магнитные моменты атомов связаны с моментом импульса электронов. Уже была получена формула
, где– момент импульса частицы создающей ток. В атоме мы имеем положительное ядро и электроне , вращающийся по орбите, на самом деле, в своё время мы увидим, что эта картина не имеет отношения к реальности, так нельзя представлять электрон, который вращается, но остаётся то, что электрон в атоме обладает моментом импульса, и этому моменту импульса будет отвечать такой магнитный момент:
. Наглядно, заряд, вращающийся по окружности, эквивалентен круговому току, то есть это элементарный виток с током. Момент импульса электрона в атоме квантуется, то есть может принимать только определённые значения, вот по такому рецепту:
,
, где вот эта величина– это постоянная Планка. Момент импульса электрона в атоме может принимать лишь определённые значения, мы сейчас не будем обсуждать, как это получается. Ну, и вследствие этого магнитный момент атома может принимать определённые значения. Эти детали нас сейчас не волнуют, но, по крайней мере, будем представлять, что атом может обладать определённым магнитным моментом, есть атомы, у которых нет магнитного момента. Тогда вещество, помещённое во внешнее поле намагничивается, а это означает, что оно приобретает определённый магнитный момент вследствие того, что магнитные моменты атомов ориентируются преимущественно вдоль поля.

Элемент объёма dV приобретает магнитный момент
, при чём векторимеет смысл плотности магнитного момента и называется вектором намагничивания. Имеется класс веществ, называемыхпарамагнетики , для которых
, намагничивается так, что магнитный момент совпадает с направлением магнитного поля. Имеютсядиамагнетики , которые намагничиваются, так сказать, «против шерсти», то есть магнитный момент антипараллелен вектору , значит,
. Это более тонкий термин. То, что векторпараллелен векторупонятно, магнитный момент атома ориентируется вдоль магнитного поля. Диамагнетизм связан с другим: если атом не обладает магнитным моментом, то во внешнем магнитном поле он приобретает магнитный момент, при чём магнитный момент антипараллелен. Этот очень тонкий эффект связан с тем, что магнитное поле влияет на плоскости орбит электронов, то есть оно влияет на поведение момента импульса. Парамагнетик втягивается в магнитное поле, диамагнетик выталкивается. Вот, чтобы это не было беспредметно, медь – это диамагнетик, и алюминий – парамагнетик, если взять магнит то алюминиевая лепёшка будет притягиваться магнитом, а тогда медная будет отталкиваться.

Понятно, что результирующее поле, когда вещество внесено в магнитное поле, это есть сумма внешнего поля и поля, создаваемого за счёт магнитного момента вещества. Теперь обратимся к уравнению
, или в дифференциальной форме
. Теперь такое утверждение: намагничивание вещества эквивалентно наведению в нём тока с плотностью
. Тогда это уравнение мы напишем в виде
.

Проверим размерность: М – это магнитный момент в единице объёма
, размерность
. Когда вы пишете какую-нибудь формулу, то размерность всегда полезно проверять, особенно если формула эта собственной выводки, то есть вы её не срисовали, не запомнили, а получили.

Намагниченность характеризуется вектором , он так и называется вектор намагниченности, это плотность магнитного момента или магнитный момент в единицу времени. Я говорил, что намагниченность эквивалентна появлению тока
, так называемого молекулярного тока, и это уравнение эквивалентно такому:
, то есть мы можем считать, что нет намагниченности, а есть такие токи. Зададимся таким уравнением:
,- это настоящие токи, связанные с конкретными носителями зарядов, аэто токи, связанные с намагниченностью. Электрон в атоме это круговой ток, возьмём область внутри, внутри образца все эти токи уничтожаются, но наличие таких круговых токов эквивалентно одному общему току, который обтекает этот проводник по поверхности, отсюда и такая формула. Перепишем это уравнение в таком виде:
,
. Этоттоже отправим влево и обозначим
, векторназываетсянапряжённостью магнитного поля , тогда уравнение приобретёт вид
. (циркуляция напряжённости магнитного поля по замкнутому контуру) = (сила тока через поверхность этого контура).

Ну, и, наконец, последнее. Мы имеем такую формулу:
. Для многих сред намагниченность зависит от напряжённости поля,
, гдемагнитная восприимчивость , это коэффициент, характеризующий склонность вещества к намагничиванию. Тогда эта формула перепишется в виде
,
магнитная проницаемость , и мы получаем такую формулу:
.

Если
, то это парамагнетики,
- это диамагнетики, ну, и, наконец, имеются вещества, для которых этопринимает большие значения (порядка 10 3),
- это ферромагнетики (железо, кобальт и никель). Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля. При наличии вещества наше фундаментальное уравнение приобретает такой вид:

,

,

.

Авот ещёпример ферромагнетика, бытовой пример магнитного поля в средах, во-первых, постоянный магнит, ну, и более тонкая вещь – магнитофонная лента. Каков принцип записи на ленту? Магнитофонная лента - это тонкая лента, покрытая слоем ферромагнетика, записывающая головка - это катушка с сердечником, по которой течёт переменный ток, в зазоре создаётся переменное магнитное поле, ток отслеживает звуковой сигнал, колебания с определённой частотой. Соответственно, в контуре магнита имеется переменное магнитное поле, которое меняется вместе с этим самым током. Ферромагнетик намагничивается переменным током. Когда эта лента протягивается по устройству такого типа, переменное магнитное поле создаёт переменную э.д.с. и воспроизводится опять электрический сигнал. Это ферромагнетики на бытовом уровне.

Выбор редакции
«12» ноября 2012 года Национальный состав населения Республики Бурятия Одним из вопросов, представляющих интерес для широкого круга...

Власти Эквадора лишили Джулиана Ассанжа убежища в лондонском посольстве. Основатель WikiLeaks задержан британской полицией, и это уже...

Вертикаль власти не распространяется на Башкортостан. Публичная политика, которая, казалось, как древний мамонт, давно вымерла на...

Традиционная карельская кухня — элемент культуры народа. Пища — один из важнейших элементов материальной культуры народа. Специфика её...
ТАТАРСКИЙ ЯЗЫК В РАЗГОВОРНИКЕ!Очень легко выучить и начать говорить!Скачайте!Просьба распространять!Русча-татарча сөйләшмәлек!...
Очень часто нам хочется поблагодарить другого человека за что-то. Да даже просто из вежливости, принимая что-то, мы часто говорим...
Характеристика углеводов. Кроме неорганических веществ в состав клетки входят и органические вещества: белки, углеводы, липиды,...
План: Введение1 Сущность явления 2 Открытие броуновского движения 2.1 Наблюдение 3 Теория броуновского движения 3.1 Построение...
На всех этапах существования языка он неразрывно связан с обществом. Эта связь имеет двусторонний характер: язык не существует вне...