Натуральный логарифм. Что такое логарифм


нередко берут цифру е = 2,718281828 . Логарифмы по данному основанию именуют натуральным . При проведении вычислений с натуральными логарифмами общепринято оперировать знаком l n , а не log ; при этом число 2,718281828 , определяющие основание, не указывают.

Другими словами формулировка будет иметь вид: натуральный логарифм числа х - это показатель степени , в которую нужно возвести число e , чтобы получить x .

Так, ln(7,389...) = 2, так как e 2 =7,389... . Натуральный логарифм самого числа e = 1, потому что e 1 =e , а натуральный логарифм единицы равен нулю, так как e 0 = 1.

Само число е определяет предел монотонной ограниченной последовательности

вычислено, что е = 2,7182818284... .

Весьма часто для фиксации в памяти какого либо числа, цифры необходимого числа ассоциируют с какой-нибудь выдающейся датой. Скорость запоминания первых девяти знаков числа е после запятой возрастет, если заметить, что 1828 — это год рождения Льва Толстого!

На сегодняшний день существуют достаточно полные таблицы натуральных логарифмов.

График натурального логарифма (функции y = ln x ) является следствием графика экспоненты зеркальным отражением относительно прямой у = х и имеет вид:

Натуральный логарифм может быть найден для каждого положительного вещественного числа a как площадь под кривой y = 1/x от 1 до a .

Элементарность этой формулировку, которая состыковывается со многими другими формулами, в которых задействован натуральный логарифм, явилось причиной образования названия «натуральный».

Если анализировать натуральный логарифм , как вещественную функцию действительной переменной, то она выступает обратной функцией к экспоненциальной функции, что сводится к тождествам:

e ln(a) =a (a>0)

ln(e a) =a

По аналогии со всеми логарифмами, натуральный логарифм преобразует умножение в сложение, деление в вычитание:

ln (xy ) = ln (x ) + ln (y )

ln (х/у)= lnx - lny

Логарифм может быть найден для каждого положительного основания, которое не равно единице, а не только для e , но логарифмы для других оснований отличаются от натурального логарифма только постоянным множителем, и, обычно, определяются в терминах натурального логарифма.

Проанализировав график натурального логарифма, получаем, что он существует при положительных значениях переменной x . Он монотонно возрастает на своей области определения.

При x0 пределом натурального логарифма выступает минус бесконечность ( -∞ ).При x → +∞ пределом натурального логарифма выступает плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a возрастает быстрее логарифма. Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумы у него отсутствуют.

Использование натуральных логарифмов весьма рационально при прохождении высшей математики. Так, использование логарифма удобно для нахождения ответа уравнений, в которых неизвестные фигурируют в качестве показателя степени. Применение в расчетах натуральных логарифмом дает возможность изрядно облегчить большое количество математических формул. Логарифмы по основанию е присутствуют при решении значительного числа физических задач и естественным образом входят в математическое описание отдельных химических, биологических и прочих процессов. Так, логарифмы употребляются для расчета постоянной распада для известного периода полураспада, или для вычисления времени распада в решении проблем радиоактивности. Они выступают в главной роли во многих разделах математики и практических наук, к ним прибегают в сфере финансов для решения большого числа задач, в том числе и в расчете сложных процентов.

График функции натурального логарифма. Функция медленно приближается к положительной бесконечности при увеличении x и быстро приближается к отрицательной бесконечности, когда x стремится к 0 («медленно» и «быстро» по сравнению с любой степенной функцией от x ).

Натуральный логарифм - это логарифм по основанию , где e {\displaystyle e} - иррациональная константа, равная приблизительно 2,72. Он обозначается как ln ⁡ x {\displaystyle \ln x} , log e ⁡ x {\displaystyle \log _{e}x} или иногда просто log ⁡ x {\displaystyle \log x} , если основание e {\displaystyle e} подразумевается . Другими словами, натуральный логарифм числа x - это показатель степени , в которую нужно возвести число e , чтобы получить x . Это определение можно расширить и на комплексные числа .

ln ⁡ e = 1 {\displaystyle \ln e=1} , потому что e 1 = e {\displaystyle e^{1}=e} ; ln ⁡ 1 = 0 {\displaystyle \ln 1=0} , потому что e 0 = 1 {\displaystyle e^{0}=1} .

Натуральный логарифм может быть также определён геометрически для любого положительного вещественного числа a как площадь под кривой y = 1 x {\displaystyle y={\frac {1}{x}}} на промежутке [ 1 ; a ] {\displaystyle } . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».

Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции , что приводит к тождествам:

e ln ⁡ a = a (a > 0) ; {\displaystyle e^{\ln a}=a\quad (a>0);} ln ⁡ e a = a (a > 0) . {\displaystyle \ln e^{a}=a\quad (a>0).}

Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:

ln ⁡ x y = ln ⁡ x + ln ⁡ y . {\displaystyle \ln xy=\ln x+\ln y.}

Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.

Основное логарифмическое тождество

a log a b = b (a > 0, a ≠ 1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.

Два очевидных следствия определения логарифма

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.

Логарифм произведения и логарифм частного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.

Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Степень можно выносить за знак логарифма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

Log a (f (x) 2 = 2 log a f (x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.


Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).

Таблица формул, связанных с логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Урок и презентация на темы: "Натуральные логарифмы. Основание натурального логарифма. Логарифм натурального числа"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Что такое натуральный логарифм

Ребята, на прошлом уроке мы с вами узнали новое, особенное число – е. Сегодня мы продолжим работать с этим числом.
Мы с вами изучили логарифмы и знаем, что в основании логарифма может стоять множество чисел, которые больше 0. Сегодня мы также рассмотрим логарифм, в основании которого стоит число е. Такой логарифм принято называть натуральным логарифмом. У него есть собственная запись: $\ln{n}$ - натуральный логарифм. Такая запись эквивалентна записи: $\log_e{n}=\ln{n}$.
Показательные и логарифмические функции являются обратными, тогда натуральный логарифм, является обратной для функции: $y=e^x$.
Обратные функции являются симметричными относительно прямой $y=x$.
Давайте построим график натурального логарифма, отразив экспоненциальную функцию относительно прямой $y=x$.

Стоит заметить угол наклона касательной к графику функции $y=e^x$ в точке (0;1) равен 45°. Тогда угол наклона касательной к графику натурального логарифма в точке (1;0) также будет равен 45°. Обе эти касательные будут параллельны прямой $y=x$. Давайте схематично изобразим касательные:

Свойства функции $y=\ln{x}$

1. $D(f)=(0;+∞)$.
2. Не является ни четной, ни нечетной.
3. Возрастает на всей области определения.
4. Не ограничена сверху, не ограничена снизу.
5. Наибольшего значения нет, наименьшего значения нет.
6. Непрерывна.
7. $E(f)=(-∞; +∞)$.
8. Выпукла вверх.
9. Дифференцируема всюду.

В курсе высшей математики доказано, что производная обратной функции есть величина, обратная производной данной функции .
Углубляться в доказательство не имеет большого смысла, давайте просто запишем формулу: $y"=(\ln{x})"=\frac{1}{x}$.

Пример.
Вычислить значение производной функции: $y=\ln(2x-7)$ в точке $х=4$.
Решение.
В общем виде наша функция представляют функцию $y=f(kx+m)$, производные таких функций мы умеем вычислять.
$y"=(\ln{(2x-7)})"=\frac{2}{(2x-7)}$.
Вычислим значение производной в требуемой точке: $y"(4)=\frac{2}{(2*4-7)}=2$.
Ответ: 2.

Пример.
Провести касательную к графику функции $y=ln{x}$ в точке $х=е$.
Решение.
Уравнение касательной к графику функции, в точке $х=а$, мы хорошо помним.
$y=f(a)+f"(a)(x-a)$.
Последовательно вычислим требуемые значения.
$a=e$.
$f(a)=f(e)=\ln{e}=1$.
$f"(a)=\frac{1}{a}=\frac{1}{e}$.
$y=1+\frac{1}{e}(x-e)=1+\frac{x}{e}-\frac{e}{e}=\frac{x}{e}$.
Уравнение касательной в точке $х=е$ представляет собой функцию $y=\frac{x}{e}$.
Давайте построим график натурального логарифма и касательной.

Пример.
Исследовать функцию на монотонность и экстремумы: $y=x^6-6*ln{x}$.
Решение.
Область определения функции $D(y)=(0;+∞)$.
Найдем производную заданной функции:
$y"=6*x^5-\frac{6}{x}$.
Производная существует при всех х из области определения, тогда критических точек нет. Найдем стационарные точки:
$6*x^5-\frac{6}{x}=0$.
$\frac{6*x^6-6}{x}=0$.
$6*x^6-6=0$.
$x^6-1=0$.
$x^6=1$.
$x=±1$.
Точка $х=-1$ не принадлежит области определения. Тогда имеем одну стационарную точку $х=1$. Найдем промежутки возрастания и убывания:

Точка $х=1$ – точка минимума, тогда $y_min=1-6*\ln{1}=1$.
Ответ: Функция убывает на отрезке (0;1], функция возрастает на луче $}

Выбор редакции
Маленькие круглые булочки, напоминающие кексики, выпекающиеся в специальных силиконовых формах, называются маффинами. Они могут быть...

И снова делюсь с вами, дорогие мои, рецептом приготовления домашнего хлеба, да не простого, а тыквенного! Могу сказать, что отношение к...

Отварите картофель для начинки. Выберите три средних клубня, хорошо промойте от земли и другой грязи, поместите в холодную воду,...

Любая хозяйка в преддверии и во время поста сталкивается с насущным вопросом: как организовать питание семьи таким образом, чтобы...
Описание Гречневый пудинг станет для вас настоящим открытием в области десертов. Требует такое лакомство минимального набора...
Существует множество рецептур приготовления домашнего печенья из пшеничной, овсяной, и даже, гречневой муки, но я сегодня хочу вам...
Кальмаров для салата готовят тремя основными способами - отваривают целой тушкой, нарезают полосками и отваривают, добавляют в салат...
Прекрасным легким блюдом, отлично подходящим для праздничного стола, считается салат с кальмарами. Экспериментируя с различными...
Крупы очень полезны для здоровья человека. Пшено — крупа, получаемая путём обдирки от чешуек культурного вида проса. Она богато белком,...