Степень диссоциации. Сильные и слабые электролиты. О классификации электролитов


Если бы электролиты полностью диссоциировали на ионы, то осмотическое давление (и другие пропорциональные ему величины) всегда было бы в целое число раз больше значений, наблюдаемых в растворах неэлектролитов. Но ещё Вант-Гофф установил, что коэффициент i

выражается дробными числами, которые с разбавлением раствора возрастают, приближаясь к целым числам.

Аррениус объяснил этот факт тем, что лишь часть электролита диссоциирует в растворе на ионы, и ввёл понятие степени диссоциации. Степенью диссоциации электролита называется отношение числа его молекул, распавшихся в данном растворе на ионы, к общему числу его молекул в растворе.

Позже было установлено что электролиты можно разделить на две группы: сильные и слабые электролиты. Сильные электролиты в водных растворах диссоциированны практически нацело. Понятие степени диссоциации к ним по существу неприменимо, а отклонение изотонического коэффициента i

от целочисленных значений объясняется другими причинами. Слабые электролиты в водных растворах диссоциируют только частично. Поэтому число ионов в растворах сильных электролитов больше, чем в растворах слабых той же концентрации. И если в растворах слабых электролитов С

ионов мала, расстояние между ними велики и взаимодействие ионов друг с другом незначительно, то в не очень разбавленных растворах сильных электролитов среднее расстояние между ионами вследствие значительной концентрации сравнительно мало. В таких растворах ионы не вполне свободны, движение их стеснено взаимным притяжением друг к другу. Благодаря этому притяжению каждый ион как бы окружен шарообразным роем противоположно заряженных ионов, получившим название «ионной атмосферы».

К сильным электролитам принадлежат все соли; из важнейших кислот и оснований к ним относятся HNO3, H2SO4, HClO4, HCl, HBr, HI, KOH, NaOH, Ba(OH)2, и Ca(OH)2.

К слабым электролитам относятся большинство органических кислот, а из важнейших неорганических соединений к ним принадлежат H2CO3, H2S, HCN, H2SiO3 и NH4OH.

Степень диссоциации принято обозначать греческой буквой a и выражать либо в долях единицы, либо в процентах.

Процесс электролитической диссоциации обратимый, поэтому в растворе электролита, наряду с его ионами присутствуют и молекулы. Соотношение содержания этих частиц определяется степенью электролитической диссоциации, которая является количественной характеристикой процесса диссоциации.

Степень диссоциации (α)– это отношение числа молекул электролита, распавшихся на ионы (n) к общему числу растворенных молекул ( ):

Степень диссоциации определяется опытным путем и выражается в долях единицы или в процентах:

Если α = 0, то диссоциация отсутствует. Если α = 100%, то электролит полностью распадается на ионы. Если α = 1,3%, то из 1000 молекул электролита только 13 диссоциирует на ионы.

Факторы, влияющие на степень электролитической диссоциации:

1. Природа электролита: полярность химической связи в соединении, увеличение которой способствует возрастанию α.

2. Концентрация раствора: α возрастает с уменьшением концентрации раствора.

3. Температура: α увеличивается с повышением температуры раствора.

Все электролиты по значению степени электролитической диссоциации принято делить на 3 группы: сильные, слабые и средней силы (табл.7.1.).

При написании уравнений диссоциации следует учитывать силу электролита. Согласно теории электролитической диссоциации, сильные электролиты диссоциируют в одну стадию на ионы, из которых состоит молекула электролита. Например:

H 2 SO 4 ↔ 2H + + SO 4 2- .

Слабые электролиты диссоциируют ступенчато, при этом преобладают ионы первой стадии (ступени). Например:

I ступень H 2 S ↔ H + +НS -

II ступень HS - ↔ H + + S 2- .

В растворах слабых электролитов всегда имеет место химическое равновесие, выражающееся в равенстве скоростей реакции диссоциации и ассоциации. Используя закон действующих масс (6.8.), для таких электролитов равновесие количественно можно выразить величиной константы диссоциации (К дисс)[‡]. Например, для электролита НА ↔ Н + + А - константа диссоциации:

. (7.10)

Таблица 7.1.

Классификация электролитов в зависимости от величины α[§]

Ионные уравнения

Согласно теории электролитической диссоциации все реакции в водных растворах электролитов являются реакциями между ионами. Они называются ионными реакциями , а уравнения этих реакций – ионными уравнениями .

При изучении процессов, протекающих в растворах электролитов, следует руководствоваться правилом:

Реакции между ионами в растворах электролитов идут практически до конца в сторону образования осадков, газов и слабых электролитов.

В ионных уравнениях принято записывать в недиссоциированной на ионы форме (в виде молекул) формулы трудно растворимых соединений, неэлекролитов, электролитов слабых и средней силы. Запись ионных реакций может быть представлена в виде молекулярного, полного и сокращенного ионного уравнений. При записи уравнения знак ↓, стоящий при формуле, означает, что вещество удаляется из сферы реакции в виде нерастворимого соединения, знак показывает, что вещество выделяется в виде газа.

молекулярное уравнение BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

полное ионное уравнение Ba 2+ + 2Cl - + 2H + + SO 4 2- = BaSO 4 ↓ + 2H + + 2Cl -

сокращенное ионное уравнение Ba 2+ + SO 4 2- = BaSO 4 ↓.

При написании ионных уравнений пользуемся данными таблицы «Растворимости солей, кислот и оснований в воде» (Приложение, табл.4.).

1 К сильным электролитам относятся электролиты, у которых α > 30 %:

а) все щелочи (основания, образованные металлами s-семейства, за исключением бериллия и магния): LiOH, NaOH, KOH, RbOH, CsOH, FrOH, Ca(OH) 2 , Ba(OH) 2 – практически диссоциируют нацело.

Основания диссоциируют в растворе с образованием катиона металла и гидроксид – ионов.

NaOH → Na + + OH – ;

Ba(OH) 2 → BaOH + + OH – .

Диссоциация многих сильных электролитов по второй стадии протекает не столь активно, как по первой. Поэтому этот процесс можно записать следующим образом:

BaOH + Ba 2 + + OH – .

Суммарное уравнение процесса:

Ba(OH) 2 → Ba 2 + + 2OH – .

б) некоторые кислоты, например: HCl, HClО 4 , HBr, HJ, HNO 3 , H 2 SO 4 .

Кислоты диссоциируют в растворе с образованием ионов водорода и ионов кислотных остатков (т. к. связь между катионом водорода и кислотным остатком более полярная, нежели между ионами в самом кислотном остатке).

HCl → H + + Cl – ;

H 2 SO 4 → H + + HSO 4 – ;

HSO 4 – H + + SO 4 2– (серная кислота по второй стадии диссоциирует хуже, чем по первой, поэтому ставится знак обратимости « »).

Условно суммарное уравнение процесса можно записать как:

H 2 SO 4 → 2H + + SO 4 2– .

в) растворимые соли (α ~ 100 %)

В солях составными частями являются атомы металлов и кислотные остатки. Именно на эти ионы и происходит распад солей при расплавлении или растворении в воде.

Na 3 PO 3 → 3Na + + PO 3 3 – .

г) кислые, основные и комплексные соли при диссоциации по первой ступени.

Кислые соли распадаются на катионы металла и анионы кислотного остатка:

К 2 HРО 3 → 2К + + HРО 3 2 – .

При чем по принципу электростатического притяжения ион(ы) водорода (Н +) остается рядом именно с анионом кислотного остатка (КО n –), а не с катионом металла (Ме n +).

Основные соли распадаются на катионы металла, связанные с гидроскогруппой, и анионы кислотного остатка:

Al(OH) 2 Cl → Al(OH) 2 + + Cl – .

При чем по принципу электростатического притяжения гидроксогруппа(ы) (ОН –) остается рядом именно с катионом металла (Ме n +) , а не с анионом кислотного остатка (КО n –).

Комплексные соли распадаются на ионы внешней сферы и комплексный ион (поскольку связь между ионом внешней сферы и комплексным ионом, как правило, ковалентная полярная или ионная, а между ионами или молекулами в самом комплексном ионе чаще донорно – акцепторная).

K 3 → 3K + + 3– .

2 Слабые электролиты диссоциируют плохо, их α < 3%.

Диссоциация слабых электролитов протекает обратимо, а если при распаде молекулы образуется три и более иона – то еще и ступенчато.

К слабым электролитам можно отнести:

а) все остальные основания:

NН 4 OH NН 4 + + OH – ;

Bе(OH) 2 BеOH + + OH – ;

BеOH + Bе 2 + + OH – ;

б) большинство остальных кислот:

HCN Н + + CN – ;

H 2 СO 3 H + + HСO 3 – ;

HСO 3 – H + + СO 3 2– ;

в) все нерастворимые растворимые соли:

AgCl Ag + + Cl – ;

BaSO 4 Ba 2 + + SO 4 2– ;

г) кислые, основные и комплексные соли при диссоциации по второй и последующим стадиям (первая стадия, как мы помним, протекает необратимо).

Кислая соль:

К 2 HРО 3 → 2К + + HРО 3 2 – ;

HРО 3 2 – H + + РО 3 3 – .

Количество стадий, следующих за первой, определяется количеством ионов водорода, оставшихся рядом с кислотным остатком.

Основная соль:

Al(OH) 2 Cl → Al(OH) 2 + + Cl – ;

Al(OH) 2 + AlOH 2 + + ОН – ;

AlOH + Al 3 + + ОН – .

Количество стадий, следующих за первой, определяется количеством гидроксогрупп, оставшихся рядом с катионом металла.

Комплексные соли:

3– Fe 3+ + 6CN – .

3 Электролиты средней силы имеют α от 3 % до 30 %

1.1.5 Константа диссоциации. Процесс диссоциации слабых электролитов является обратимым и в системе существует динамическое равновесие, которое может быть описано константой равновесия, выраженной через концентрации образующихся ионов и непродиссоциировавших молекул, называемой константой диссоциации. Т.е. константа электролитической диссоциации – это не что иное, как константа химического равновесия, применимая к распаду слабого электролита. Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

А a В b aА x + + bВ y –

константа диссоциации выразится следующим соотношением:

Константа диссоциации (K D или просто К) – отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше K D , тем больше концентрация ионов в растворе.

В многоосновных кислотах и многоокислотных основаниях диссоциация происходит ступенчато, причем каждая ступень характеризуется своей величиной степени диссоциации. Так, ортофосфорная кислота диссоциирует по трем ступеням (таблица 1).

Таблица 1 – Диссоциация ортофосфорной кислоты

Константа диссоциации K д

Степень диссоциации α

К 1 = 7,1∙10 –3

К 2 = 6,2∙10 –8

К 3 = 5,0∙10 –13

Как видно, K D 1 > K D 2 > K D 3 . Следовательно, наиболее полно диссоциация протекает по первой стадии, поскольку: 1) ион проще оторвать от нейтральной молекулы, чем от заряженного иона: ионы водорода H + значительно сильнее притягиваются к трехзарядному иону РО 3– и двухзарядному иону НРО 2– , чем к однозарядному НРО – ; 2) происходит подавление диссоциации, протекающей по второй и последующим стадиям, ионами, образующимися при распаде молекулы по первой ступени (происходит смещение равновесия диссоциации влево за счет одноименных ионов, в случае с фосфорной кислотой – ионами водорода).

Отсюда следует, что распад электролита на ионы протекает, в основном, по первой ступени и в растворе ортофосфорной кислоты будут находиться преимущественно ионы Н + и НРО 2– .

1.1.6 Взаимосвязь константы диссоциации и степени диссоциации. Закон разбавления Оствальда. Запишем еще раз уравнение диссоциации бинарного соединения, относящегося к слабым электролитам:

АВ А + + В – .

Запишем выражение его константы диссоциации:

К =
.

Если общую концентрацию слабого электролита обозначить С , то равновесные концентрации А + и В – равны α ·С , а концентрация недиссоциированных молекул АВ – (С α ·С ) = (1 – α )∙С . Тогда выражение (2) в этом случае можно переписать следующим образом:

.

Таким образом, степень диссоциации слабого электролита обратно пропорциональна концентрации и прямо пропорциональна разбавлению раствора; выражение (5) называют законом разбавления Оствальда: степень диссоциации слабого электролита в растворе тем выше, чем более разбавлен раствор.

1.1.7 Смещение равновесия диссоциации слабого электролита. Равновесие в растворах электролитов, как и всякое химическое равновесие, сохраняется неизменным, пока определяющие его условия не меняются, а изменение условий влечет за собой нарушение равновесия.

Так, равновесие нарушается при изменении концентрации одного из участвующих в этом равновесии ионов: при ее увеличении происходит процесс, в ходе которого эти ионы связываются. Например, если в раствор хлорноватистой кислоты, являющейся слабым электролитом и диссоциирующей обратимо по схеме

HClO H + + Cl –

ввести какую-либо соль этой кислоты, являющуюся сильным электролитом и диссоциирующую необратимо (например, NaCl → Na + + Cl –) и тем самым увеличить концентрацию ионов Cl – , то, в соответствии с принципом Ле Шателье, равновесие смещается влево, т. е. степень диссоциации хлорноватистой кислоты уменьшается. Отсюда следует, что введение в раствор слабого электролита одноименных ионов (т. е. ионов, одинаковых с одним из ионов электролита) уменьшает степень диссоциации этого электролита. В данном случае уменьшение степени диссоциации хлорноватистой кислоты будет происходить и в случае добавления к ней любой сильной кислоты, содержащей ионы водорода Н + .

Наоборот, уменьшение концентрации одного из ионов вызывает диссоциацию нового количества молекул. Например, при введении в раствор указанной кислоты гидроксид-ионов (образующихся при диссоциации, например, NаOH → Na + + ОН –) , связывающих ионы водорода, диссоциация кислоты возрастает за счет смещения равновесия диссоциации вправо.

На основании рассмотренных примеров можно сделать общий вывод. Обязательным условием протекания реакций между электролитами является удаление из раствора тех или иных ионов, например, вследствие образования слабо диссоциирующих веществ или веществ, выделяющихся из раствора в виде осадка или газа. Иначе говоря, реакции в растворах электролитов всегда идут в сторону образования наименее диссоциированных или наименее растворимых веществ.

1. ЭЛЕКТРОЛИТЫ

1.1. Электролитическая диссоциация. Степень диссоциации. Сила электролитов

Согласно теории электролитической диссоциации, соли, кислоты, гидроксиды, растворяясь в воде, полностью или частично распадаются на самостоятельные частицы – ионы.

Процесс распада молекул веществ на ионы под действием полярных молекул растворителя называют электролитической диссоциацией . Вещества, диссоциирующие на ионы в растворах, называют электролитами. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами ; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами ; к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита (α) называется отношение числа его молекул, распавшихся в данном растворе на ионы (n ), к общему числу его молекул в растворе (N ), или

α = .

Степень электролитической диссоциации принято выражать либо в долях единицы, либо в процентах.

Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,03 (3%) до 0,3 (30%)-средними, менее 0,03 (3%)-слабыми электролитами. Так, для 0,1 M раствора CH 3 COOH α = 0,013 (или 1,3 %). Следовательно, уксусная кислота является слабым электролитом. Степень диссоциации показывает, какая часть растворенных молекул вещества распалась на ионы. Степень электролитической диссоциации электролита в водных растворах зависит от природы электролита, его концентрации и температуры.

По своей природе электролиты можно условно разделить на две большие группы: сильные и слабые . Сильные электролиты диссоциируют практически полностью (α = 1).

К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI , HClO 4 , H М nO 4 );

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH , NaOH , KOH , RbOH , CsOH , а также гидроксиды щелочноземельных металлов – Ba (OH ) 2 , Ca (OH ) 2 , Sr (OH ) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном в недиссоциированном состоянии (в молекулярной форме). Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S , HNO 2 , H 2 SO 3 , HCN , H 3 PO 4 , H 2 SiO 3 , HCNS , HСlO и др.);

2) вода (H 2 O );

3) гидроксид аммония (NH 4 OH );

4) большинство органических кислот

(например, уксусная CH 3 COOH, муравьиная HCOOH);

5) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости).

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация соляной кислоты (НС l ) записывается следующим образом:

HCl → H + + Cl – .

Основания диссоциируют с образованием катионов металла и гидроксид-ионов. Например, диссоциация КОН

КОН → К + + ОН – .

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато. Например,

H 2 CO 3 H + + HCO 3 – ,

HCO 3 – H + + CO 3 2– .

Первое равновесие – диссоциация по первой ступени – характеризуется константой

.

Для диссоциации по второй ступени:

.

В случае угольной кислоты константы диссоциации имеют следующие значения: K I = 4,3 × 10 –7 , K II = 5,6 × 10 –11 . Для ступенчатой диссоциации всегда K I >K II >K III > ... , т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2 → Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2– .

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Кислые соли рассматривают как продукт, получающийся из многоосновных кислот, в которых не все атомы водорода замещены на металл. Диссоциация кислых солей происходит по ступеням, например:

KHCO 3 K + + HCO 3 – (первая ступень)

Выбор редакции
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...

Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...

Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...

Лепить во сне пельмени означает наступление нужды, ухудшение самочувствия и погибшие надежды. Покупать пельмени в магазине – наяву...
Ну кто же не любит спелую сладкую черешню? Она является одним из самых долгожданных лакомств в летний сезон практически для каждого...
Сон, в котором видится дохлый пес, можно назвать пугающим и ужасающим. Но чтобы его истолковать и узнать, к чему снится мертвая собака,...
Квас из чистотела по рецепту Болотова собрал весьма противоречивые отзывы, но к ним мы вернемся чуть ниже. А сейчас поговорим о полезных...
В переводе с грузинского «сацебели» - просто «соус», причем название произносят с ударением на первый слог. Чаще его делают из орехов,...
Сыроедческие спагетти лишь условно можно назвать именем популярных макаронных изделий, так как живые спагетти похожи на оригинал только...