Строение молекулы днк ген. Клетка, молекула, днк - микромир человека, жизнь внутри организма. У нас есть центр, где можно сделать анализ ДНК


ВНИМАНИЕ!!! ДАННЫЙ МАТЕРИАЛ ПЕРЕРАБОТАН, ДОПОЛНЕН И ВКЛЮЧЕН В КНИГУ «Творение или эволюция? Сколько лет Земле?». ДЛЯ ЧТЕНИЯ ПЕРЕЙДИТЕ НА СТРАНИЦУ -->


Чтоб убедиться в абсурдности самозарождения, давайте посмотрим, как устроен микромир. Отметим, что рассмотрим мы его лишь поверхностно, так как он чересчур сложен.

Клетка - элементарная единица строения и жизнедеятельности всех живых организмов. Она обладает собственным обменом веществ, способна к самостоятельному существованию, самовоспроизведению и развитию. Каждая клетка – это город в миниатюре, состоящий из электростанций, путепроводов, очистных сооружений и т.д. Клетка состоит из ядра, мембраны, цитоплазмы, хромосом, рибосом, ДНК, РНК, белков и многих других элементов, каждый из которых, в свою очередь, имеет собственный микромир. Естественно, клетка может существовать и выполнять свои функции, если все эти структуры созданы одновременно.

Молекула белка (протеина) состоит из 50 – 40000 соединенных между собой аминокислот.

Рис. Принцип строения белка из аминокислот

Причем разнообразие белковых структур, создаваемых из 20 видов аминокислот, трудно переоценить. Так, цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10 в 130 степени вариантах, попросту говоря, 10 и 130 нолей. Для примера: в мировом океане 10 в 40 степени молекул воды (10 и 40 нолей). Причем, месторасположение каждой аминокислоты в структуре белка имеет огромное значение, как в компьютерной программе. Если хоть один элемент переставить местами, молекула протеина не будет работать, а значит, не сможет функционировать и выполнять свое предназначение и клетка, то есть часть организма, в которой нужны клетки с этими белками не будут работать. Представьте, как ничтожно мала возможность спонтанного появления самого простого протеина и тем более конкретного который нужен клетке и как следствие организму! А ведь для функционирования простейших клетки и организма нужны тысячи различных протеинов.

Без рибосом и РНК аминокислоты не могут соединиться в протеин, тем более именно в такой, какой необходим на данном этапе конкретной клетке. РНК берет информацию об этом нужном белке из ДНК, а рибосомы выступают в качестве строительной площадки.


Рис. Синтез белка в клетке

В молекуле ДНК хромосом человека насчитывается от 50 до 245 миллионов сложно выстроенных пар азотистых оснований. Биохимики посчитали, что в 1 молекуле ДНК возможно 10 в 87 степени вариантов соединения находящегося в ней материала. И лишь один вариант позволит создать Вас лично – со всеми правильно функционирующими органами и индивидуальными качествами. Ученые-материалисты считают, что земле 4,5 млрд. лет. Этот период времени соответствует 10 в 25 степени секунд. То есть, если каждую секунду придумывать один вариант ДНК, то и возраста Земли не хватит, для того чтоб создать одну функционирующую ДНК. Но дело не только в колоссальной сложности ДНК. Дело в том, что ДНК является программой, которую можно сравнить с компьютерным кодом. Только этот код по своей величине и сложности превосходит программы, созданные человеком. Знаменитый программист Билл Гейтс так говорил о ДНК: "Человеческая ДНК подобна компьютерной программе, только бесконечно совершеннее". Задумайтесь, раз есть программа, то нужен и считывающий механизм, иначе любая программа всего лишь мусор. Так вот, ДНК содержит и код для создания механизма для считывания информации с себя и дальнейшего строительства по этой программе всего организма. В ДНК записано где и в какое время в человеке должен быть создан определенный белок и другие элементы. Из одной клетки, в которой находится ДНК, начинается самостроительство любого организма. Делиться молекуле ДНК позволяет ее строение. Она состоит из двух параллельных идентичных ниток нуклеотидов, связанных слабой химической водородной связью. Когда молекула делится, цепочка разрывается, оставляя всю информацию в каждой из полученных новых клеток.

Рис. Структура ДНК

Кто создал материал для клетки? Кто соединил этот материал в клетку? Кто придумал различные - отличающиеся друг от друга, предназначенные для разных функций, но небоходимые каждому организму клетки. Кто записал информацию в виде программы в ДНК? Кто создал механизм для прочтения и выполнения этой информации? О гениальной сложности клетки снят научно-документальный фильм " Чудо в клетке (чудо клетки) ", в котором в виде анимации показано какие архисложные происходят внутри клетки процессы. Существует множество видеоматериалов об этом "Жизнь клетки", "Мир клетки" и др. Для анализа теории Дарвина нужно понимать, что в те времена наука могла увидеть в микроскоп лишь крупные бактерии, а клетка представлялась людям малюсенькой емкостью с жидкостью. Тем более им ничего не было известно о микробиологии и генетике.

Сегодня многие ученые осознают невероятную сложность строения клетки и в целом организма. Часть из них встают на сторону креационистов. Но многие верят в случай. Таким образом мы видим не противостояние ученых против религии, а две религии - 1) вера в Бога и творение и 2) вера в случайное счастливое зарождение жизни и ее дальнейшее саморазвитие. Но даже простого разума достаточно, чтоб понять практическую невозможность последнего. Подумайте, как миллионы неживых элементов с помощью химических связей сорганизовались в сложные огромнейшие структуры ДНК, РНК, рибосомы, белки и т.д., соблюдая строго определенную последовательность (в том числе, программу), а затем, "продумав" и "распределив" между собой взаимодействия, окружив себя оболочкой, создали из себя живой организм - клетку с огромнейшими разнообразными возможностями и функциями. Как затем клетки, делясь, расползались не в кисель, а создавали отдельные органы, ткани, кости, сосуды, мозг, которые сложно взаимодействуя между собой, образовывали жизнеспособный и способный к самовоспроизведению организм. Откуда появился мужской род и женский? Если предположить, что мы произошли от амебы, то правильнее была бы теория деления. Как в процессе эволюции внутри вида его представители делились постепенно на мужской род и женский, причем сохраняя жизнеспособность и приобретая возможность уникального воспроизведения себе подобных, да еще разными способами (внутреннее, внешнее, двойное оплодотворение…)? Как появлялись на свет новые существа, например, млекопитающие, когда строение женского и мужского организмов еще только находилось в процессе разделения и развития? Ведь недоразвитые спермотозоиды, яйцеклетки и матка просто не способны создать живое существо. Как разнополые существа и их органы развивалось параллельно будучи при этом жизнеспособными. Сегодня мы видим, что даже малое отклонение или заболевание в сперматозоидах, яйцеклетках и матке делает человека бесплодным. А говоря об эволюционном развитии, просто неизбежно постепенное совершенствование всего как внешнего так и внутреннего, в том числе и органов размножения. Как размножались недоразвитые существа с недоразвитыми органами размножения и как размножались промежуточные формы? Ответа на эти вопросы у материалистов нет, да и не может быть.

Здесь уместно вспомнить о риторическом вопросе, на который материалисты никогда не смогут найти ответа: "Что было ранее курица или яйцо?". Не смотря на кажущуюся комичность вопроса, он очень серьезен. Курица, не могла бы появиться без яйца – совершенного устройства для образования эмбриона, роста зародыша и развития его в курицу. Так и яйцо не могло появиться вдруг неоткуда без курицы. Данная взаимоисключающая аналогия накладывается и на другие спорные моменты материалистической теории эволюции. Как было выше отмечено, любой организм имеет ДНК, в которую записана вся информация о нем. Без этого готового ДНК с заложенной в него информацией не было бы этого совершенного организма. Так и ДНК можно взять только из уже созданного существа.

Сэр Фред Хойль профессор астрономии в Кембридже посвятил много времени математическому вычислению возможности случайного возникновения жизни и впоследствии заявил: «Скорее смерч, промчавшийся через кладбище старых автомобилей, может собрать «Боинг-747» из хлама, поднятого в воздух, чем из неживой природы сможет возникнуть живая».

Поэтому, наука до сих пор не может привести повторяющегося примера самозарождения жизни!

КЛЕТКА, МОЛЕКУЛА, ДНК - МИКРОМИР ЧЕЛОВЕКА, ЖИЗНЬ ВНУТРИ ОРГАНИЗМА

Радиоуглеродный метод ошибается

Магнитное поле Земли ослабевает

«Проткнутые» слои

Эрозия почв на начальном уровне

Возраст Луны меньше 10000 лет

Прирост населения соответствует Библейскому возрасту земли

Луна недалеко от Земли

Ледовые кольца показывают не годы

Коралловый риф рос меньше 5000 лет

Динозавры надежные свидетели

Все люди произошли от одной пары

Цивилизациям и письменности менее 5000 лет

Слои Земли не имеют собственной датировки. Геологические слои. Геохронологическая шкала

Отсутствие научных доказательств. Кент Ховинд

Дезоксирибонуклеиновая кислота - полимер, состоит из нуклеотидов.


Нуклеотид ДНК состоит из

  • азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)
  • моносахара дезоксирибозы
  • фосфорной кислоты

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получается полинуклеотидная цепь .


Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями по правилу комплементарности : напротив аденина всегда стоит тимин, напротив цитозина - гуанин (они подходят друг другу по форме и числу водородных связей - между А и Т две связи, между Ц и Г - 3). Получается двойная цепь ДНК, она скручивается в двойную спираль .

Функция ДНК

ДНК входит в состав хромосом, хранит наследственную информацию (о признаках организма, о первичной структуре белков).


ДНК способна к самоудвоению (репликации, редупликации). Самоудвоение происходит в интерфазе перед делением. После удвоения каждая хромосома состоит из двух хроматид, которые во время будущего деления превратятся в дочерние хромосомы. Благодаря самоудвоению каждая из будущих дочерних клеток получит одинаковую наследственную информацию.

Отличия РНК от ДНК по строению

  • рибоза вместо дезоксирибозы
  • нет тимина, вместо него урацил
  • одноцепочечная

Виды РНК

  • информационная (матричная) РНК
    • переносит информацию о строении белка из ядра (от ДНК) в цитоплазму (к рибосоме);
    • меньше всего в клетке;
  • транспортная РНК
    • переносит аминокислоты к рибосоме;
    • самая маленькая, имеет форму клеверного листа;
  • рибосомная РНК
    • входит в состав рибосом;
    • самая большая по размерам и количеству

Задачи на правило комплементарности

Тимина в ДНК столько же, сколько аденина, остальное (до 100%) приходится на цитозин и гуанин, их тоже поровну. Например: если гуанина 15%, значит цитозина тоже 15%, итого 30%, значит, на аденин и тимин приходится 100-30=70%, следовательно аденина 70/2=35% и тимина тоже 35%

Выберите один, наиболее правильный вариант. Благодаря какому процессу в ходе митоза образуются дочерние клетки с набором хромосом, равным материнскому
1) образования хроматид
2) спирализации хромосом
3) растворения ядерной оболочки
4) деления цитоплазмы

Ответ


Рассмотрите рисунок с изображением фрагмента молекулы биополимера. Определите, (А) что служит ее мономером, (Б) в результате какого процесса увеличивается число этих молекул в клетке, (В) какой принцип лежит в основе ее копирования. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) комплементарность
2) репликация
3) нуклеотид
4) денатурация
5) углевод
6) трансляция
7) транскрипция

Ответ


Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) выполняет ферментативную функцию
2) хранит и передает наследственную информацию
3) состоит из двух нуклеотидных цепей
4) в комплексе с белками образует хромосомы
5) участвует в процессе трансляции

Ответ


Установите соответствие между характеристикой молекулы нуклеиновой кислоты и ее видом: 1) тРНК, 2) ДНК. Запишите цифры 1 и 2 в правильном порядке.
А) состоит из одной полинуклиотидной цепи
Б) транспортирует аминокислоту к рибосоме
В) состоит из 70-80 остатков нуклеотидов
Г) хранит наследственную информацию
Д) способна к репликации
Е) представляет собой спираль

Ответ


НУКЛЕОТИД ИЗ ДРУГОЙ ПАРЫ
1. В ДНК на долю нуклеотидов с тимином приходится 23%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 13%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В ДНК на долю нуклеотидов с аденином приходится 18%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


4. В ДНК на долю нуклеотидов с тимином приходится 36%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


5. В ДНК на долю нуклеотидов с тимином приходится 28%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД ИЗ ЭТОЙ ЖЕ ПАРЫ
1. Фрагмент молекулы ДНК содержит 15% аденина. Сколько тимина в этом фрагменте ДНК? В ответ запишите только число (количество процентов тимина).

Ответ


2. В некоторой молекуле ДНК на долю нуклеотидов с гуанином приходится 28%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином приходится 37%. Определите процентное содержание нуклеотидов с тимином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД - СУММА ОДНОЙ ПАРЫ
1. Какое процентное содержание нуклеотидов с аденином и тимином в сумме содержит молекула ДНК, если доля ее нуклеотидов с цитозином составляет 26% от общего числа? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 15%. Определите процентное содержание нуклеотидов с тимином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА ОДНОЙ ПАРЫ - НУКЛЕОТИД
1. Какой процент составляют нуклеотиды с аденином в молекуле ДНК, если нуклеотиды с гуанином и цитозином вместе составляют 18%? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с гуанином и цитозином приходится 36%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 26%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


4. В некоторой молекуле ДНК на долю нуклеотидов с цитозином и гуанином в сумме приходится 42%. Определите процентное содержание нуклеотидов с аденином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


5. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 54%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА РАЗНЫХ ПАР
1. Фрагмент молекулы ДНК содержит 10% тимина. Сколько аденина и гуанина в сумме в этом фрагменте ДНК? В ответ запишите только количество аденина и гуанина в сумме.

Ответ


2. В ДНК на долю нуклеотидов с тимином приходится 35%. Определите процентное содержание нуклеотидов с цитозином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


Выберите три варианта. Чем молекула ДНК отличается от молекулы иРНК?
1) способна самоудваиваться
2) не может самоудваиваться
3) участвует в реакциях матричного типа
4) не может служить матрицей для синтеза других молекул
5) состоит из двух полинуклеотидных нитей, закрученных в спираль
6) является составной частью хромосом

Ответ



1. Проанализируйте таблицу. Наполните пустые ячейки таблицы, используя понятия и термины, приведенные и списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) урацил
2) построение тела рибосомы
3) перенос информации о первичной структуре белка
4) рРНК

Ответ



2. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) рРНК
2) образование в комплексе с белками тела рибосомы
3) хранение и передача наследственной информации
4) урацил
5) тРНК
6) аминокислота

8) синтез иРНК

Ответ


Выберите один, наиболее правильный вариант. К биологическим полимерам относят молекулу
1) рибозы
2) глюкозы
3) аминокислоты

Ответ


Выберите один, наиболее правильный вариант. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК
1) ионная
2) пептидная
3) водородная
4) ковалентная полярная

Ответ


Выберите один, наиболее правильный вариант. Соединение двух цепей в молекуле ДНК происходит за счет
1) гидрофобных взаимодействий нуклеотидов
2) пептидных связей между азотистыми основаниями
3) взаимодействий комплементарных азотистых оснований
4) ионных взаимодействий нуклеотидов

Ответ


Сколько нуклеотидов с цитозином содержит молекула ДНК, если количество нуклеотидов с тимином 120, что составляет 15% от общего числа? В ответе запишите соответствующее число.

Ответ


В РНК на долю нуклеотидов с урацилом и аденином приходится по 10%. Определите процентное содержание нуклеотидов с тимином входящих в состав комплементарной, двуспиральной цепи ДНК. В ответе запишите только соответствующее число.

Ответ


Участок цепочки ДНК бактериофага лямбда содержит 23 нуклеотида с тимином, сколько нуклеотидов с цитозином в этом участке, если его протяженность 100 нуклеотидов? В ответ запишите только количество нуклеотидов.

Ответ


В молекуле и-РНК содержится 200 нуклеотидов с урацилом, что составляет 10% от общего числа нуклеотидов. Сколько нуклеотидов (в %) с аденином содержит одна из цепей молекулы ДНК? В ответе запишите соответствующее число.

Ответ


Фрагмент молекулы ДНК содержит 60 нуклеотидов. Из них 12 нуклеотидов приходится на тимин. Сколько гуаниновых нуклеотидов содержится в этом фрагменте? В ответе запишите только число.

Ответ


Установите соответствие между признаком нуклеиновой кислоты и ее видом: 1) и-РНК, 2) т-РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) имеет форму клеверного листа
Б) доставляет аминокислоты к рибосоме
В) имеет самые маленькие размеры из нуклеиновых кислот
Г) служит матрицей для синтеза белков
Д) передает наследственную информацию из ядра к рибосоме

Ответ


Установите соответствие между характеристиками и органическими веществами клетки: 1) иРНК, 2) тРНК, 3) рРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) доставляет аминокислоты для трансляции
Б) содержит информацию о первичной структуре полипептида
В) входит в состав рибосом
Г) служит матрицей для трансляции
Д) активизирует аминокислоту

Ответ


1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) состоит из одной полинуклеотидной неспирализованной цепи
3) передает наследственную информацию из ядра к рибосоме
4) имеет самые большие размеры из нуклеиновых кислот
5) состоит из нуклеотидов АУГЦ

Ответ


2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) переносит информацию к месту синтеза белка
3) в комплексе с белками строит тело рибосомы
4) способна самоудваиваться
5) переносит аминокислоты к месту синтеза белка

Ответ


Выберите один, наиболее правильный вариант. Копией одного или группы генов, несущих информацию о структуре белков, выполняющих одну функцию, является молекула

2) тРНК
3) АТФ
4) иРНК

Ответ


Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Сколько нуклеотидов содержится в двух цепях ДНК? Ответ запишите в виде числа.

Ответ


1. Сколько нуклеотидов включает фрагмент двуцепочечной молекулы ДНК, содержащий 14 нуклеотидов с аденином и 20 нуклеотидов с гуанином? В ответе запишите только соответствующее число.

Ответ


2. Сколько нуклеотидов включает в себя фрагмент двуцепочечной молекулы ДНК, если в нём содержится 16 нуклеотидов с тимином и 16 нуклеотидов с цитозином? В ответе запишите только соответствующее число.

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке схемы строения молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

ДНК (дезоксирибонуклеиновая кислота) - своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С ) и фосфатной (Ф ) группы (фосфодиэфирные связи).


Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т ), гуанин — только с цитозином (Г-Ц ). Именно эти пары и составляют «перекладины» винтовой "лестницы" ДНК (см.: рис. 2, 3 и 4).


Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.


Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ


Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты - это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания , соединенного с пятиуглеродным углеводом (пентозой) - дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H 2 PO 3 -).

Азотистые основания бывают двух типов: пиримидиновые основания - урацил (только в РНК), цитозин и тимин, пуриновые основания - аденин и гуанин.


Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые


Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:


Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль . Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей . Аденин всегда соединяется с тимином, а цитозин - с гуанином. Это называется правилом комплементарности .

Правило комплементарности:

A-T G-C

Например, если нам дана цепь ДНК, имеющая последовательность

3’- ATGTCCTAGCTGCTCG - 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении - от 5’-конца к 3’-концу:

5’- TACAGGATCGACGAGC- 3’.


Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК - это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез - это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

1) ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
2) ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
3) ДНК-связывающие белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
4) ДНК-полимераза δ (дельта), согласовано со скоростью движения репликативной вилки, осуществляет синтез ведущей цепи дочерней ДНК в направлении 5"→3" на матрице материнскойнити ДНК по направлению от ее 3"-конца к 5"-концу (скорость до 100 пар нуклеотидов в секунду). Этим события на данной материнской нити ДНК ограничиваются.



Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α (Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ (Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.

Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см.

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5"→3" синтезирует праймер (РНК-затравку) - последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.

Вместо ДНК-полимеразы α к 3"-концу праймера присоединяется ДНК-полимераза ε .

6) ДНК-полимераза ε (эпсилон) как бы продолжает удлинять праймер, но в качестве субстрата встраивает дезоксирибонуклеотиды (в количестве 150-200 нуклеотидов). В результате образуется цельная нить из двух частей - РНК (т.е. праймер) и ДНК . ДНК-полимераза ε работает до тех пор, пока не встретит праймер предыдущего фрагмента Оказаки (синтезированный чуть ранее). После этого данный фермент удаляется с цепи.

7) ДНК-полимераза β (бета) встает вместо ДНК-полимеразы ε , движется в том же направлении (5"→3") и удаляет рибонуклеотиды праймера, одновременно встраивая дезоксирибонуклеотиды на их место. Фермент работает до полного удаления праймера, т.е. пока на его пути не встанет дезоксирибонуклеотид (еще более ранее синтезированный ДНК-полимеразой ε ). Связать результат свой работы и впереди стоящую ДНК фермент не в состоянии, поэтому он сходит с цепи.

В результате на матрице материнской нити "лежит" фрагмент дочерней ДНК. Он называется фрагмент Оказаки .

8) ДНК-лигаза производит сшивку двух соседних фрагментов Оказаки , т.е. 5"-конца отрезка, синтезированного ДНК-полимеразой ε , и 3"-конца цепи, встроенного ДНК-полимеразой β .

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом . Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т ) в РНК представлен урацил (U ) , который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами .

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК - эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ - 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’- ATGTCCTAGCTGCTCG - 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’- TACAGGATCGACGAGC- 3’,

а синтезируемая с нее РНК - последовательность

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код - способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов - кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5" к 3" концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

U U U

(Phe/F)

U C U

(Ser/S)

U A U

(Tyr/Y)

U G U

(Cys/C)

U

U U C

U C C

U A C

U G C

C

U U A

(Leu/L)

U C A

U A A

Стоп-кодон**

U G A

Стоп-кодон**

A

U U G

U C G

U A G

Стоп-кодон**

U G G

(Trp/W)

G

C

C U U

C C U

(Pro/P)

C A U

(His/H)

C G U

(Arg/R)

U

C U C

C C C

C A C

C G C

C

C U A

C C A

C A A

(Gln/Q)

C GA

A

C U G

C C G

C A G

C G G

G

A

A U U

(Ile/I)

A C U

(Thr/T)

A A U

(Asn/N)

A G U

(Ser/S)

U

A U C

A C C

A A C

A G C

C

A U A

A C A

A A A

(Lys/K)

A G A

A

A U G

(Met/M)

A C G

A A G

A G G

G

G

G U U

(Val/V)

G C U

(Ala/A)

G A U

(Asp/D)

G G U

(Gly/G)

U

G U C

G C C

G A C

G G C

C

G U A

G C A

G A A

(Glu/E)

G G A

A

G U G

G C G

G A G

G G G

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG , также кодирующий метионин, называется старт-кодоном . С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA , UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность . Каждая аминокислота кодируется последовательностью из трех нуклеотидов - триплетом или кодоном.

2. Непрерывность . Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость . Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность . Один кодон может кодировать только одну аминокислоту.

5. Вырожденность . Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность . Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’- CCGATTGCACGTCGATCGTATA - 5’.

Матричная цепь будет иметь последовательность:

5’- GGCTAACGTGCAGCTAGCATAT - 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’- CCGAUUGCACGUCGAUCGUAUA - 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’- AUAUGCUAGCUGCACGUUAGCC - 3’.

Теперь найдем старт-кодон AUG:

5’- AUAUG CUAGCUGCACGUUAGCC - 3’.

Разделим последовательность на триплеты:

звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК - на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.


Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном - совокупность всех генов организма; его полный хромосомный набор.

Термин "геном" был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими ("избыточными") последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации ), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент» . Позднее эта концепция была расширена до определения «один ген — один полипептид» , поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид - аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами ).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена , кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов ). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?


Рис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру - нуклеоид. Хромосома прокариота Escherichia coli , чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972-984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

20 000

Oryza sativa (рис)

480 000 000

57 000

Mus musculus (мышь)

2 634 266 500

27 000

Homo sapiens (человек)

3 070 128 600

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

* Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) - двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.

В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila , классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n ) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17 ). Каждая хромосома эукариотической клетки, как показано на рис. 17, а , содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y) различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.


Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.

Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека , поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 10 14 клеток, таким образом, общая длина всех молекул ДНК составляет 2・10 11 км. Для сравнения, окружность Земли — 4・10 4 км, а расстояние от Земли до Солнца — 1,5・10 8 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность - основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности . Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции - транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор - нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область , включающая в себя промотор и оператор .

Промотор - последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор - это область, с которой могут связываться специальные белки - репрессоры , которые могут уменьшать активность синтеза РНК с этого гена - иначе говоря, уменьшать его экспрессию .

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается - и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

Рис. 18. Схема строения гена у прокариот (бактерий) - изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков с интезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу - оперон . Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона - регуляторы . Белок, транслируемый с этого гена называется репрессор . Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции .


Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот - изображение увеличивается

Такое сопряжение не встречается у эукариот из-за наличия у них ядерной оболочки, отделяющей цитоплазму, где происходит трансляция, от генетического материала, на котором происходит транскрипция. У прокариот во время синтеза РНК на матрице ДНК с синтезируемой молекулой РНК может сразу связываться рибосома. Таким образом, трансляция начинается еще до завершения транскрипции. Более того, с одной молекулой РНК может одновременно связываться несколько рибосом, синтезируя сразу несколько молекул одного белка.

Строение генов у эукариот

Гены и хромосомы эукариот очень сложно организованы

У бактерий многих видов всего одна хромосома, и почти во всех случаях в каждой хромосоме присутствует по одной копии каждого гена. Лишь немногие гены, например гены рРНК, содержатся в нескольких копиях. Гены и регуляторные последовательности составляют практически весь геном прокариот. Более того, почти каждый ген строго соответствует аминокислотной последовательности (или последовательности РНК), которую он кодирует (рис. 14).

Структурная и функциональная организация генов эукариот гораздо сложнее. Исследование хромосом эукариот, а позднее секвенирование полных последовательностей геномов эукариот принесло много сюрпризов. Многие, если не большинство, генов эукариот обладают интересной особенностью: их нуклеотидные последовательности содержат один или несколько участков ДНК, в которых не кодируется аминокислотная последовательность полипептидного продукта. Такие нетранслируемые вставки нарушают прямое соответствие между нуклеотидной последовательностью гена и аминокислотной последовательностью кодируемого полипептида. Эти нетранслируемые сегменты в составе генов называют интронами , или встроенными последовательностями , а кодирующие сегменты — экзонами . У прокариот лишь немногие гены содержат интроны.

Итак, у эукариот практически не встречается объединение генов в опероны, и кодирующая последовательность гена эукариот чаще всего разделена на транслируемые участки - экзоны , и нетранслируемые участки - интроны.

В большинстве случаев функция интронов не установлена. В целом, лишь около 1,5% ДНК человека являются ≪кодирующими≫, т. е. несут информацию о белках или РНК. Однако с учетом крупных интронов получается, что ДНК человека на 30% состоит из генов. Поскольку гены составляют относительно небольшую долю в геноме человека, значительная часть ДНК остается неучтенной.

Рис. 16. Схема строение гена у эукариот - изображение увеличивается

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны.

После этого проходит процесс сплайсинга, в результате которого интронные участки вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок.


Рис. 20. Процесс альтернативного сплайсинга - изображение увеличивается

Такая организация генов позволяет, например, осуществить , когда с одного гена могут быть синтезированы разные формы белка, за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях.

Рис. 21. Отличия в строении генов прокариот и эукариот - изображение увеличивается

МУТАЦИИ И МУТАГЕНЕЗ

Мутацией называется стойкое изменение генотипа, то есть изменение нуклеотидной последовательности.

Процесс, который приводит к возникновению мутаций называется мутагенезом , а организм, все клетки которого несут одну и ту же мутацию — мутантом .

Мутационная теория была впервые сформулирована Гуго де Фризом в 1903 году. Современный ее вариант включает в себя следующие положения:

1. Мутации возникают внезапно, скачкообразно.

2. Мутации передаются из поколения в поколение.

3. Мутации могут быть полезными, вредными или нейтральными, доминантными или рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации не направленны.

Мутации могут возникать под действием различных факторов. Различают мутации, возникшие под действием мутагенных воздействий : физических (например, ультрафиолета или радиации), химических (например, колхицина или активных форм кислорода) и биологических (например, вирусов). Также мутации могут быть вызваны ошибками репликации .

В зависимости от условий появления мутации подразделяют на спонтанные — то есть мутации, возникшие в нормальных условиях, и индуцированые — то есть мутации, которые возникли при особых условиях.

Мутации могут возникать не только в ядерной ДНК, но и, например, в ДНК митохондрий или пластид. Соответственно, мы можем выделять ядерные и цитоплазматические мутации.

В результате возникновения мутаций часто могут появляться новые аллели. Если мутантный аллель подавляет действие нормального, мутация называется доминантной . Если нормальный аллель подавляет мутантный, такая мутация называется рецессивной . Большинство мутаций, приводящих к возникновению новых аллелей являются рецессивными.

По эффекту выделяют мутации адаптивные , приводящие к повышению приспособленности организма к среде, нейтральные , не влияющие на выживаемость, вредные , понижающие приспособленность организмов к условиям среды и летальные , приводящие к смерти организма на ранних стадиях развития.

По последствиям выделяются мутации, приводящие к потери функции белка , мутации, приводящие к возникновению у белка новой функции , а также мутации, которые изменяют дозу гена , и, соответственно, дозу белка синтезируемого с него.

Мутация может возникнуть к любой клетке организма. Если мутация возникает в половой клетке, она называется герминативной (герминальной, или генеративной). Такие мутации не проявляются у того организма, у которого они появились, но приводят к появлению мутантов в потомстве и передаются по наследству, поэтому они важны для генетики и эволюции. Если мутация возникает в любой другой клетке, она называется соматической . Такая мутация может в той или иной степени проявляться у того организма, у которого она возникла, например, приводить к образованию раковых опухолей. Однако такая мутация не передается по наследству и не влияет на потомков.

Мутации могут затрагивать разные по размеру участки генома. Выделяют генные , хромосомные и геномные мутации.

Генные мутации

Мутации, которые возникают в масштабе меньшем, чем один ген, называются генными , или точечными (точковыми) . Такие мутации приводят к изменению одного и нескольких нуклеотидов в последовательности. Среди генных мутаций выделяют замены , приводящие к замене одного нуклеотида на другой, делеции , приводящие к выпадению одного из нуклеотидов, инсерции , приводящие к добавлению лишнего нуклеотида в последовательность.


Рис. 23. Генные (точечные) мутации

По механизму воздействия на белок, генные мутации делят на: синонимичные , которые (в результате вырожденности генетического кода) не приводят к изменению аминокислотного состава белкового продукта, миссенс-мутации , которые приводят к замене одной аминокислоты на другую и могут влиять на структуру синтезируемого белка, хотя часто они оказываются незначительными, нонсенс-мутации , приводящие к замене кодирующего кодона на стоп-кодон, мутации, приводящие к нарушению сплайсинга:


Рис. 24. Схемы мутаций

Также по механизму воздействия на белок выделяют мутации, приводящие к сдвигу рамки считывания , например, инсерции и делеции. Такие мутации, как и нонсенс-мутации, хоть и возникают в одной точке гена, часто воздействуют на всю структуру белка, что может привести к полному изменению его структуры.

Рис. 29. Хромосома до и после дупликации

Геномные мутации

Наконец, геномные мутации затрагивают весь геном целиком, то есть меняется количество хромосом. Выделяют полиплоидии — увеличение плоидности клетки, и анеуплоидии, то есть изменение количества хромосом, например, трисомии (наличие у одной из хромосом дополнительного гомолога) и моносомии (отсутствие у хромосомы гомолога).

Видео по теме ДНК

РЕПЛИКАЦИЯ ДНК, КОДИРОВАНИЕ РНК, СИНТЕЗ БЕЛКА

Дезоксирибонуклеиновая кислота (ДНК ) - макромолекула (одна из трёх основных, две другие - РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака, а Нобелевскую премию, увы, не дают посмертно.

    История изучения

    Структура молекулы

    Нуклеотиды

    Двойная спираль

    Образование связей между спиралями

    Химические модификации оснований

    Повреждения ДНК

    Суперскрученность

    Структуры на концах хромосом

    Биологические функции

    Структура генома

    Последовательности генома, не кодирующие белок

    Транскрипция и трансляция

    Репликация

    Взаимодействие с белками

    Структурные и регуляторные белки

    Ферменты, модифицирующие ДНК

    Топоизомеразы и хеликазы

    Нуклеазы и лигазы

    Полимеразы

    Генетическая рекомбинация

    Эволюция метаболизма, основанного на ДНК

    Список литературы

    История изучения

ДНК как химическое вещество была выделена Иоганном Фридрихом Мишером в 1868 году из остатков клеток, содержащихся в гное. Он выделил вещество, в состав которого входят азот и фосфор. Вначале новое вещество получило название нуклеин , а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Мклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенная из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (эксперимент Херши Чейз 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии или медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени от рака Розалинды Франклин, так как премия не присуждается посмертно.

Интересно, что в 1957 году американцы Александер Рич, Гэри Фелзенфелд и Дэйвид Дэйвис описали нуклеиновую кислоту, составленную тремя спиралями. А в 1985-1986 годах Максим Давидович Франк-Каменецкий в Москве показал, как двухспиральная ДНК складывается, в так называемую H-форму, составленную уже не двумя, а тремя нитями ДНК.

    Структура молекулы.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер (полианион), мономером которого является нуклеотид.

Каждый нуклеотид состоит из остатка фосфорной кислоты, присоединённого по 5"-положению к сахару дезоксирибозе, к которому также через гликозидную связь (C-N) по 1"-положению присоединено одно из четырёх азотистых оснований. Именно наличие характерного сахара и составляет одно из главных различий между ДНК и РНК, зафиксированное в названиях этих нуклеиновых кислот (в состав РНК входит сахар рибоза). Пример нуклеотида - аденозинмонофосфат, у которого основанием, присоединённым к фосфату и рибозе, является аденин (показан на рисунке).

Исходя из структуры молекул, основания, входящие в состав нуклеотидов, разделяют на две группы: пурины (аденин [A] и гуанин [G]) образованы соединёнными пяти- и шестичленным гетероциклами; пиримидины (цитозин [C] и тимин [T]) - шестичленным гетероциклом.

В виде исключения, например, у бактериофага PBS1, в ДНК встречается пятый тип оснований - урацил ([U]), пиримидиновое основание, отличающееся от тимина отсутствием метильной группы на кольце, обычно заменяющее тимин в РНК.

Следует отметить, что тимин и урацил не так строго приурочены к ДНК и РНК соответственно, как это считалось ранее. Так, после синтеза некоторых молекул РНК значительное число урацилов в этих молекулах метилируется с помощью специальных ферментов, превращаясь в тимин. Это происходит в транспортных и рибосомальных РНК.

    Двойная спираль.

Полимер ДНК обладает довольно сложной структурой. Нуклеотиды соединены между собой ковалентно в длинные полинуклеотидные цепи. Эти цепи в подавляющем большинстве случаев (кроме некоторых вирусов, обладающих одноцепочечными ДНК-геномами) попарно объединяются при помощи водородных связей во вторичную структуру, получившую название двойной спирали. Остов каждой из цепей состоит из чередующихся фосфатов сахаров. Внутри одной цепи ДНК соседние нуклеотиды соединены фосфодиэфирными связями, которые формируются в результате взаимодействия между 3"-гидроксильной (3"-ОН) группой молекулы дезоксирибозы одного нукдеотида и 5"-фосфатной группой (5"-РО 3) другого. Асимметричные концы цепи ДНК называются 3" (три прим) и 5" (пять прим). Полярность цепи играет важную роль при синтезе ДНК (удлинение цепи возможно только путём присоединения новых нуклеотидов к свободному 3"-концу).

Как уже было сказано выше, у подавляющего большинства живых организмов ДНК состоит не из одной, а из двух полинуклеотидных цепей. Эти две длинные цепи закручены одна вокруг другой в виде двойной спирали, стабилизированной водородными связями, образующимися между обращёнными друг к другу азотистыми основаниями входящих в неё цепей. В природе эта спираль, чаще всего, правозакрученная. Направления от 3"-конца к 5"-концу в двух цепях, из которых состоит молекула ДНК, противоположны (цепи «антипараллельны» друг другу).

Ширина двойной спирали составляет от 22 до 24 А, или 2,2 - 2,4 нм, длина каждого нуклеотида 3,3 Å (0,33 нм). Подобно тому, как в винтовой лестнице сбоку можно увидеть ступеньки, на двойной спирали ДНК в промежутках между фосфатным остовом молекулы можно видеть рёбра оснований, кольца которых расположены в плоскости, перпендикулярной по отношению к продольной оси макромолекулы.

В двойной спирали различают малую (12 Å) и большую (22 Å) бороздки. Белки, например, факторные транскрипции, которые присоединяются к определённым последовательностям в двухцепочечной ДНК, обычно взаимодействуют с краями оснований в большой бороздке, где те более доступны.

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины комплементарны пиримидинам (то есть способны к образованию водородных связей с ними): аденин образует связи только с тимином, а цитозин - с гуанином. В двойной спирали цепочки также связаны с помощью гидрофобных взаимодействий и стекинга, которые не зависят от последовательности оснований ДНК.

Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи. Обратимость и специфичность взаимодействий между комплементарными парами оснований важна для репликации ДНК и всех остальных функций ДНК в живых организмах.

Так как водородные связи нековалентны, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов (хеликазы) или при высокой температуре. Разные пары оснований образуют разное количество водородных связей. АТ связаны двумя, ГЦ - тремя водородными связями, поэтому на разрыв ГЦ требуется больше энергии. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для диссоциации цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.

Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.

Азотистые основания в составе ДНК могут быть ковалентно модифицированы, что используется при регуляции экспрессии генов. Например, в клетках позвоночных метилирование цитозина с образованием 5-метилцитозина используется соматическими клетками для передачи профиля генной экспрессии дочерним клеткам. Метилирование цитозина не влияет на спаривание оснований в двойной спирали ДНК. У позвоночных метилирование ДНК в соматических клетках ограничивается метилированием цитозина в последовательности ЦГ. Средний уровень метилирования отличается у разных организмов, так, у нематоды Caenorhabditis elegans метилирование цитозина не наблюдается, а у позвоночный обнаружен высокий уровень метилирования - до 1 %. Другие модификации оснований включают метилирование аденина у бактерий и гликозилирование урацила с образованием «J-основания» в кинетопластах.

Метилирование цитозина с образованием 5-метилцитозина в промоторной части гена коррелирует с его неактивным состоянием. Метилирование цитозина важно также для инактивации у млекопитающих. Метилирование ДНК используется в геномном импринтинге. Значительные нарушения профиля метилирования ДНК происходит при канцерогенезе.

Несмотря на биологическую роль, 5-метилцитозин может спонтанно утрачивать аминную группу (деаминироваться), превращаясь в тимин, поэтому метилированные цитозины являются источником повышенного числа мутаций.

НК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация - ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями.

Оксиданты, такие как свободные радикалы или пероксид водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований. Среди разных типов повреждений наиболее опасные - это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям.

Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых - бензопирен, акридины, афлатоксин. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака.

Если взяться за концы верёвки и начать скручивать их в разные стороны, она становится короче и на верёвке образуются «супервитки». Так же может быть суперскручена и ДНК. В обычном состоянии цепочка ДНК делает один оборот на каждые 10,4 основания, но в суперскрученном состоянии спираль может быть свёрнута туже или расплетена. Выделяют два типа суперскручивания: положительное - в направлении нормальных витков, при котором основания расположены ближе друг к другу; и отрицательное - в противоположном направлении. В природе молекулы ДНК обычно находятся в отрицательном суперскручивании, которое вносится ферментами - топоизомеразами. Эти ферменты удаляют дополнительное скручивание, возникающее в ДНК в результате транскрипции и репликации.

На концах линейных хромосом находятся специализированные структуры ДНК, называемые теломерами. Основная функция этих участков - поддержание целостности концов хромосом. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Поскольку обычные ДНК-полимеразы не могут реплицировать 3" концы хромосом, это делает специальный фермент - теломераза.

В клетках человека теломеры часто представлены одноцепочечной ДНК и состоят из нескольких тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадроплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом.

На концах хромосом могут образовываться и другие структуры: основания могут быть расположены в одной цепочке или в разных параллельных цепочках. Кроме этих «стопочных» структур теломеры формируют большие петлеобразные структуры, называемые Т-петли или теломерные петли. В них одноцепочечная ДНК располагается в виде широкого кольца, стабилизированного теломерными белками. В конце Т-петли одноцепочечная теломерная ДНК присоединяется к двухцепочечной ДНК, нарушая спаривание цепочек в этой молекуле и образуя связи с одной из цепей. Это трёхцепочечное образование называется Д-петля.

ДНК является носителем генетической информации, записанной в виде последовательности нуклеотидов с помощью генетического кода. С молекулами ДНК связаны два основополагающих свойства живых организмов - наследственность и изменчивость. В ходе процесса, называемого репликацией ДНК, образуются две копии исходной цепочки, наследуемые дочерними клетками при делении, таким образом образовавшиеся клетки оказываются генетически идентичны исходной.

Генетическая информация реализуется при экспрессии геном в процессах транскрипции (синтеза молекул РНК на матрице ДНК) и трансляции (синтеза белков на матрице РНК).

Последовательность нуклеотидов «кодирует» информацию о различных типах РНК: информационных, или матричных (мРНК), рибосомальных (рРНК) и транспортных (тРНК). Все эти типы РНК синтезируются на основе ДНК в процессе транскрипции. Роль их в биосинтезе белков (процессе трансляции) различна. Информационная РНК содержит информацию о последовательности аминокислот в белке, рибосомальные РНК служат основой для рибосом (сложных нуклеопротеиновых комплексов, основная функция которых - сборка белка из отдельных аминокислот на основе иРНК), транспортные РНК доставляют аминокислоты к месту сборки белков - в активный центр рибосомы, «ползущей» по иРНК.

Большинство природных ДНК имеет двухцепочечную структуру, линейную (эукариоты, некоторые вирусы и отдельные роды бактерий) или кольцевую (прокариоты, хлоропласты и митохондрии). Линейную одноцепочечную ДНК содержат некоторые вирусы и бактериофаги. Молекулы ДНК находятся в плотно упакованном, конденсированном состоянии.В клетках эукариот ДНК располагается главным образом в ядре в виде набора хромосом. Бактериальная (прокариоты) ДНК обычно представлена одной кольцевой молекулой ДНК, расположенной в неправильной формы образовании в цитоплазме, называемым нуклеоидом. Генетическая информация генома состоит из генов. Ген - единица передачи наследственной информации и участок ДНК, который влияет на определённую характеристику организма. Ген содержит открытую рамку считывания, которая транскрибируется, а также регуляторные, например, промотор и энхансер, которые контролируют экспрессию открытых рамок считывания.

У многих видов только малая часть общей последовательности генома кодирует белки. Так, только около 1,5 % генома человека состоит из кодирующих белок экзонов, а больше 50 % ДНК человека состоит из некодирующих повторяющихся последовательностей ДНК. Причины наличия такого большого количества некодирующей ДНК в эукариотических геномах и огромная разница в размерах геномов (С-значение) - одна из неразрешённых научных загадок; исследования в этой области также указывают на большое количество фрагментов реликтовых вирусов в этой части ДНК.

В настоящее время накапливается всё больше данных, противоречащих идее о некодирующих последовательностях как «мусорной ДНК» (англ. junk DNA ). Теломеры и центромеры содержат малое число генов, но они важны для функционирования и стабильности хромосом. Часто встречающаяся форма некодирующих последовательностей человека - псевдогены, копии генов, инактивированные в результате мутаций. Эти последовательности нечто вроде молекулярных мскопаемых, хотя иногда они могут служить исходным материалом для дупликации и последующей дивергенции генов. Другой источник разнообразия белков в организме - это использование интронов в качестве «линий разреза и склеивания» в альтернативном сплайсинге. Наконец, не кодирующие белок последовательности могут кодировать вспомогательные клеточные РНК, например, мяРНК. Недавнее исследование транскрипции генома человека показало, что 10 % генома даёт начало полиаденилированным РНК, а исследование и генома мыши показало, что 62 % его транскрибируется.

Генетическая информация, закодированная в ДНК, должна быть прочитана и в конечном итоге выражена в синтезе различных биополимеров, из которых состоят клетки. Последовательность оснований в цепочке ДНК напрямую определяет последовательность оснований в РНК, на которую она «переписывается» в процессе, называемом транскрипцией. В случае мРНК эта последовательность определяет аминокислоты белка. Соотношение между нуклеотидной последовательностью мРНК и аминокислотной последовательностью определяется правилами трансляции, которые называются генетическим кодом. Генетический код состоит из трёхбуквенных «слов», называемых кодонами, состоящих из трёх нуклеотидов (то есть ACT CAG TTT и т. п.). Во время транскрипции нуклеотиды гена копируются на синтезируемую РНК РНК-полимеразой. Эта копия в случае мРНК декодируетсярибосомой, которая «читает» последовательность мРНК, осуществляя спаривание матричной РНК с транспортными, которые присоединены к аминокислотам. Поскольку в трёхбуквенных комбинациях используются 4 основания, всего возможны 64 кодона (4³ комбинации). Кодоны кодируют 20 стандартных аминокислот, каждой из которых соответствует в большинстве случаев более одного кодона. Один из трёх кодонов, которые располагаются в конце мРНК, не означает аминокислоту и определяет конец белка, это «стоп» или «нонсенс» кодоны - TAA, TGA, TAG.

Деление клеток необходимо для размножения одноклеточного и роста многоклеточного организма, но до деления клетка должна удвоить геном, чтобы дочерние клетки содержали ту же генетическую информацию, что и исходная клетка. Из нескольких теоретически возможных механизмов удвоения (репликации) ДНК реализуется полуконсервативный. Две цепочки разделяются, а затем каждая недостающая комплементарная последовательность ДНК воспроизводится ферментом ДНК-полимеразой. Этот фермент строит полинуклеотидную цепь, находя правильное основание через комплементарное спаривание оснований и присоединяя его к растущей цепочке. ДНК-полимераза не может начинать новую цепь, а только лишь наращивать уже существующую, поэтому она нуждается в короткой цепочке нуклеотидов (праймере), синтезируемой праймазой. Так как ДНК-полимеразы могут строить цепочку только в направлении 5" --> 3", для копирования антипараллельных цепей используются разные механизмы.

Все функции ДНК зависят от её взаимодействия с белками. Взаимодействия могут быть неспецифическими, когда белок присоединяется к любой молекуле ДНК, или зависеть от наличия особой последовательности. Ферменты также могут взаимодействовать с ДНК, из них наиболее важные - это РНК-полимеразы, которые копируют последовательность оснований ДНК на РНК в транскрипции или при синтезе новой цепи ДНК - репликации.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру -нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

В то же время другие белки узнают и присоединяются к специфическим последовательностям. Наиболее изученная группа таких белков - различные классы факторов транскрипции, то есть белки, регулирующие транскрипцию. Каждый из этих белков узнаёт свою последовательность, часто в промоторе, и активирует или подавляет транскрипцию гена. Это происходит при ассоциации факторов транскрипции с РНК-полимеразой либо напрямую, либо через белки-посредники. Полимераза ассоциирует сначала с белками, а потом начинает транскрипцию. В других случаях факторы транскрипции могут присоединяться к ферментам, которые модифицируют находящиеся на промоторах гистоны, что изменяет доступность ДНК для полимераз.

Так как специфические последовательности встречаются во многих местах генома, изменения в активности одного типа фактора транскрипции могут изменить активность тысяч генов. Соответственно, эти белки часто регулируются в процессах ответа на изменения в окружающей среде, развития организма и дифференцировки клеток. Специфичность взаимодействия факторов транскрипции с ДНК обеспечивается многочисленными контактами между аминокислотами и основаниями ДНК, что позволяет им «читать» последовательность ДНК. Большинство контактов с основаниями происходит в главной бороздке, где основания более доступны.

Хорошо изученными примерами взаимодействия белков и ДНК, не зависящего от нуклеотидной последовательности ДНК, является взаимодействие со структурными белками. В клетке ДНК связана с этими белками, образуя компактную структуру, которая называется хроматин. У прокариот хроматин образован при присоединении к ДНК небольших щелочных белков - гистонов, менее упорядоченный хроматин прокариот содержит гистон-подобные белки. Гистоны формируют дискообразную белковую структуру - нуклеосому, вокруг каждой из которых вмещается два оборота спирали ДНК. Неспецифические связи между гистонами и ДНК образуются за счёт ионных связей щелочных аминокислот гистонов и кислотных остатков сахарофосфатного остова ДНК. Химические модификации этих аминокислот включают метилирование, фосфорилирование и ацетилирование. Эти химические модификации изменяют силу взаимодействия между ДНК и гистонами, влияя на доступность специфических последовательностей для факторов транскрипции и изменяя скорость транскрипции. Другие белки в составе хроматина, которые присоединяются к неспецифическим последовательностям - белки с высокой подвижностью в гелях, которые ассоциируют большей частью с согнутой ДНК. Эти белки важны для образования в хроматине структур более высокого порядка. Особая группа белков, присоединяющихся к ДНК, - это белки, которые ассоциируют с одноцепочечной ДНК. Наиболее хорошо охарактеризованный белок этой группы у человека - репликационный белок А, без которого невозможно протекание большинства процессов, где расплетается двойная спираль, включая репликацию, рекомбинацию и репарацию. Белки этой группы стабилизируют одноцепочечную ДНК и предотвращают формирование стеблей-петель или деградации нуклеазами.

Практически каждый слышал о существовании в живых клетках молекул ДНК и знает, что эта молекула ответственна за передачу наследственной информации. Огромная куча разных фильмов в той или иной степени строит свои сюжеты на свойствах маленькой, но гордой очень важной молекулы.

Однако мало кто хоть примерно сможет объяснить, что именно входит в состав молекулы ДНК и каким образом функционируют процессы считывания этой всей информации о «строении всего организма». Прочитать же без запинки «дезоксирибонуклеиновая кислота» способны и вовсе единицы.

Попробуем разобраться, из чего же состоит и как выглядит самая важная для каждого из нас молекула.

Строение структурного звена - нуклеотида

В состав молекулы ДНК входит множество структурных единиц, поскольку она является биополимером. Полимер - это макромолекула, которая состоит из множества маленьких, последовательно соединенных повторяющихся фрагментов. Подобно тому как цепь состоит из звеньев.

Структурным звеном макромолекулы ДНК является нуклеотид. В состав нуклеотидов молекулы ДНК входят остатки трех веществ - ортофосфорной кислоты, сахарида (дезоксирибозы) и одного из четырех возможных азотсодержащих оснований.

В состав молекулы ДНК входят азотистые основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т).

Состав цепи нуклеотидов отображают чередованием вошедших в нее оснований: -ААГЦГТТАГЦАЦГТ- и т.п. Последовательность может быть любая. Так формируется одинарная цепочка ДНК.

Спирализация молекулы. Явление комплементарности

Величина молекулы ДНК человека чудовищно огромна (в масштабах других молекул, конечно)! В геноме одной-единственной клетки (46 хромосом) содержится примерно 3,1 млрд пар нуклеотидов. Длина цепочки ДНК, составленной таким количеством звеньев, равняется примерно двум метрам. Трудно представить, каким образом настолько громоздкую молекулу можно разместить в пределах крохотной клетки.

Но природа позаботилась о более компактной упаковке и защите своего генома - две цепочки соединяются между собой азотистыми основаниями и образуют хорошо известную двойную спираль. Таким образом, удается сократить длину молекулы почти в шесть раз.

Порядок взаимодействия азотистых оснований строго определен явлением комплементарности. Аденин может соединяться исключительно с тимином, а цитозин взаимодействует только с гуанином. Эти комплементарные пары подходят друг другу как ключ и замок, как кусочки пазла.

Теперь давайте посчитаем, сколько же памяти в компьютере (ну или на флешке) должна занимать вся информация об этой маленькой (в масштабе нашего с вами мира) молекуле. Количество пар нуклеотидов - 3,1х10 9 . Всего значений 4, что означает - для одной пары достаточно 2-х бит информации (2 2 значений). Умножаем все это друг на друга и получаем 6200000000 бит, или 775000000 байт, или 775000 килобайт, или 775 мегабайт. Что примерно соответствует емкости CD диска или объему какой-нибудь 40-минутной серии фильма в среднем качестве.

Образование хромосом. Определение генома человека

Помимо спирализации, молекула еще неоднократно подвергается уплотнению. Двойная спираль начинает закручиваться подобно клубку ниток – этот процесс называется сверхспирализацией и происходит с помощью специального белка гистона, на который как на катушку наматывается цепочка.

Этот процесс сокращает длину молекулы еще в 25-30 раз. Подвергаясь еще нескольким уровням упаковки, все больше и больше уплотняясь, одна молекула ДНК совместно со вспомогательными белками формирует хромосому.

Вся информация, которая касается формы, вида и особенностей функционирования нашего организма определяется набором генов. Ген - это строго определенный участок молекулы ДНК. Он состоит из неизменной последовательности нуклеотидов. Более того, ген жестко определен не только составом, но и своим положением относительно других участков цепи.

Рибонуклеиновая кислота и ее роль в синтезе белка

Помимо ДНК существуют другие виды нуклеиновых кислот – матричная, транспортная и рибосомная РНК (рибонуклеиновая кислота). Цепи РНК намного меньше и короче, благодаря этому они способны проникать сквозь мембрану ядра.

Молекула РНК также является биополимером. Ее структурные фрагменты подобны тем, что входят в состав ДНК за небольшим исключением сахарида (рибозы вместо дезоксирибозы). Азотистых оснований четыре вида: знакомые нам А, Г, Ц и урацил (У) вместо тимина. На картинке выше все это наглядно показано.

Макромолекула ДНК способна передать информацию РНК в раскрученном виде. Раскручивание спирали происходит с помощью специального фермента, который разделяет двойную спираль на отдельные цепочки – как расходятся половинки замка-молнии.

В это же время, параллельно цепи ДНК создается комплементарная цепь РНК. Скопировав информацию и попав из ядра в среду клетки, цепочка РНК инициирует процессы синтеза закодированного геном белка. Синтез протеинов протекает в особых органеллах клетки - рибосомах.

Рибосома по мере прочтения цепочки определяет, в какой последовательности необходимо соединять аминокислоты, одна за другой - по мере считывания в РНК информации. Затем, синтезированная цепочка аминокислот принимает определенную 3D форму.

Эта объемная структурная молекула и является протеином, способным выполнять закодированные функции ферментов, гормонов, рецепторов и строительного материала.

Выводы

Для любого живого существа именно белок (протеин), является конечным продуктом каждого гена. Именно протеины определяют все то разнообразие форм, свойств и качеств, которые зашифрованы в наших клетках.

Уважаемые читатели блога , а вы знаете где находится ДНК , оставляйте комментарии или отзывы что вы хотели узнать. Кому то это очень пригодиться!

Выбор редакции
Александр Беляев Человек-амфибия (повести) Человек-амфибия ЧАСТЬ ПЕРВАЯ «МОРСКОЙ ДЬЯВОЛ» Наступила душная январская ночь аргентинского...

Великая Отечественная война стала тяжелейшим испытанием для молодой страны Советов. Борьба с немецкими оккупантами была страшна и...

Лучшие лунные дни для смены места работы 10 лунный день: отлично Ближайший начнётся 20.08.2018 в 16:09. Десятый день лунных суток —...

Иметь частный бизнес – очень рискованное дело, ведь при его открытии никто точно не знает, будет он успешным или прогорит. Поэтому его...
Кадровая служба предприятия: делопроизводство, документооборот и нормативная база Гусятникова Дарья Ефимовна 2.5. Табель учета...
Табель учета определен постановлением Госкомстата №1 от 05.01.2004 (табель учета является обязательным для заполнения, но законом не...
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...
Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...
Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...