Температура - мера средней кинетической энергии молекул. Основное уравнение МКТ. Температура как мера средней кинетической энергии хаотического движения молекул


При понижении абсолютной температуры идеального газа в 1,5 раза средняя кинетическая энергия теплового движения молекул

1) увеличится в 1,5 раза

2) уменьшится в 1,5 раза

3) уменьшится в 2,25 раза

4) не изменится

Решение.

При понижении абсолютной температуры в 1,5 раза средняя кинетическая энергия также уменьшится в 1,5 раза.

Правильный ответ: 2.

Ответ: 2

При уменьшении абсолютной температуры идеального газа в 4 раза средняя квадратичная скорость теплового движения его молекул

1) уменьшится в 16 раз

2) уменьшится в 2 раза

3) уменьшится в 4 раза

4) не изменится

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости: Таким образом, при уменьшении абсолютной температуры в 4 раза средняя квадратичная скорость движения его молекул уменьшится в 2 раза.

Правильный ответ: 2.

Владимир Покидов (Москва) 21.05.2013 16:37

Нам послали такую замечательную формулу как Е=3/2kT, Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна его температуре, как изменяется температура,так изменяется и средняя кинетическая энергия теплового движения молекул

Алексей

Добрый день!

Все верно, по сути температура и средняя энергия теплового движения --- это одно и тоже. Но нас в этой задаче спрашивают про скорость, а не про энергию

При повышении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре, например, для одноатомного газа:

При повышении абсолютной температуры в 2 раза средняя кинетическая энергия также увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

При понижении абсолютной температуры идеального газа в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) уменьшится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

При понижении абсолютной температуры в 2 раза средняя кинетическая энергия также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Следовательно, увеличение средней квадратичной скорости теплового движения в 2 раза приведет к увеличению средней кинетической энергии в 4 раза.

Правильный ответ: 2.

Ответ: 2

Алексей (Санкт-Петербург)

Добрый день!

Обе формулы имеют место. Использованная в решении формула (первое равенство) представляет собой просто математическую запись определения средней кинетической энергии: что нужно взять все молекулы, посчитать их кинетические энергии, а потом взять среднее арифметическое. Второе (тождественное) равенство в этой формуле — всего на всего определение того, что такое средняя квадратичная скорость.

Ваша формула на самом деле куда более серьезная, она показывает, что среднюю энергию теплового движения можно использовать в качестве меры температуры.

При уменьшении средней квадратичной скорости теплового движения молекул в 2 раза средняя кинетическая энергия теплового движения молекул

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 4 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости теплового движения молекул:

Следовательно, уменьшение средней квадратичной скорости теплового движения в 2 раза приведет к уменьшению средней кинетической энергии в 4 раза.

Правильный ответ: 3.

Ответ: 3

При увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Следовательно, при увеличении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость увеличится в 2 раза.

Правильный ответ: 4.

Ответ: 4

Алексей (Санкт-Петербург)

Добрый день!

Знак - это тождественное равенство, то есть равенство выполняющееся всегда, по сути, когда стоит такой знак, это означает, что величины равны по определению.

Яна Фирсова (Геленджик) 25.05.2012 23:33

Юрий Шойтов (Курск) 10.10.2012 10:00

Здравствуйте, Алексей!

В Вашем решении ошибка, не влияющая на ответ. Зачем Вам понадобилось в решении говорить о квадрате среднего значения модуля скорости? В задании не такого термина. Тем более, что он вовсе не равен средне квадратичному значению, а только пропорционален. Поэтому Ваше тождество является ложным.

Юрий Шойтов (Курск) 10.10.2012 22:00

Добрый вечер, Алексей!

Если это так, в чем же состоит прикол, что Вы в одной и той же формуле одну и ту же величину обозначаете по разному?! Разве что для придания большего наукообразия. Поверьте в нашей методике преподавания физики и без Вас этого "добра" достаточно.

Алексей (Санкт-Петербург)

Никак не могу понять, что Вас смущает. У меня написано, что квадрат среднеквадратичной скорости по определению есть среднее значение квадрата скорости. В черта просто часть обозначения среднеквадратичной скорости, а в - процедура усреднения.

При уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость

1) уменьшится в 4 раза

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул пропорциональна квадрату средней квадратичной скорости:

Следовательно, при уменьшении средней кинетической энергии теплового движения молекул в 4 раза их средняя квадратичная скорость уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

При повышении абсолютной температуры одноатомного идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального одноатомного газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при повышении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул увеличится в раз.

Правильный ответ: 2.

Ответ: 2

При понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул

1) уменьшится в раз

2) увеличится в раз

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Абсолютная температура идеального газа пропорциональна квадрату средней квадратичной скорости теплового движения молекул. Действительно:

Следовательно, при понижении абсолютной температуры идеального газа в 2 раза средняя квадратичная скорость теплового движения молекул уменьшится в раз.

Правильный ответ: 1.

Ответ: 1

Алексей (Санкт-Петербург)

Добрый день!

Не путайте, средняя величина от квадрата скорости равна не квадрату средней скорости, а квадрату средней квадратичной скорости. Средняя скорость для молекула газа вообще равна нулю.

Юрий Шойтов (Курск) 11.10.2012 10:07

Путаете все-таки Вы а не гость.

Во всей школьной физике буквой v без стрелки обозначается модуль скорости. Если над этой буквой стоит черта, то это обозначает среднее значение модуля скорости, которое вычисляется из распределения Максвелла, и оно равно 8RT/пи*мю. Корень же квадратный из средней квадратичной скорости равен 3RT/пи*мю. Как видите никакого равенства в Вашем тождестве нет.

Алексей (Санкт-Петербург)

Добрый день!

Даже не знаю, что возразить, это, наверное, вопрос, обозначений. В учебнике Мякишева средняя квадратичная скорость обозначается именно так, Сивухин использует обозначение . А Вы как привыкли обозначать эту величину?

Игорь (Кому надо тот знает) 01.02.2013 16:15

Почему температуру идеального газа вы расчитывали по формуле кинетической энергии? Ведь средняя квадратичная скорость находится по формуле: http://reshuege.ru/formula/d5/d5e3acf50adcde572c26975a0d743de1.png = Корень из (3kТ/m0)

Алексей (Санкт-Петербург)

Добрый день!

Если Вы приглядитесь внимательно, то увидите, что Ваше определение средней квадратичной скорости совпадает с тем, что использовано в решении.

По определению, квадрат средней квадратичной скорости равен среднему квадрату скорости, а именно через последний определяется температура газа.

При уменьшении средней кинетической энергии теплового движения молекул в 2 раза абсолютная температура

1) не изменится

2) увеличится в 4 раза

3) уменьшится в 2 раза

4) увеличится в 2 раза

Решение.

Средняя кинетическая энергия теплового движения молекул идеального газа прямо пропорциональна абсолютной температуре:

Следовательно, при уменьшении средней кинетической энергии теплового движения в 2 раза абсолютная температура газа также уменьшится в 2 раза.

Правильный ответ: 3.

Ответ: 3

В результате нагревания неона, температура этого газа увеличилась в 4 раза. Средняя кинетическая энергия теплового движения его молекул при этом

1) увеличилась в 4 раза

2) увеличилась в 2 раза

3) уменьшилась в 4 раза

4) не изменилась

Таким образом, при результате нагревания неона в 4 раза средняя кинетическая энергия теплового движения его молекул увеличивается в 4 раза.

Правильный ответ: 1.

  • Из основного уравнения молекулярно-кинетической теории газа вытекает важное следствие: температура есть мера средней кинетической энергии молекул. Докажем это.

Для простоты будем считать количество газа равным 1 моль. Молярный объем газа обозначим через V M . Произведение молярного объема на концентрацию молекул представляет собой постоянную Авогадро N A , т. е. число молекул в 1 моль.

Умножим обе части уравнения (4.4.10) на молярный объем V M и учтем, что nV M = N A . Тогда

Формула (4.5.1) устанавливает связь макроскопических параметров - давления р и объема V M - со средней кинетической энергией поступательного движения молекул.

Вместе с тем полученное опытным путем уравнение состояния идеального газа для 1 моль имеет вид

Левые части уравнений (4.5.1) и (4.5.2) одинаковы, значит, должны быть равны и их правые части, т.е.

Отсюда вытекает связь между средней кинетической энергией поступательного движения молекул и температурой:

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре. Чем выше температура, тем быстрее движутся молекулы.

Соотношение между температурой и средней кинетической энергией поступательного движения молекул (4.5.3) установлено для разреженных газов. Однако оно оказывается справедливым для любых веществ, движение атомов или молекул которых подчиняется законам механики Ньютона. Оно верно для жидкостей, а также для твердых тел, у которых атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решетки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул также приближается к нулю(1).

Постоянная Больцмана

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N А. Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

Постоянная Больцмана равна

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т * так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Болъцмана k ≈ 10 23 Дж/К - надо запомнить.

(1) При очень низких температурах (вблизи абсолютного нуля) движение атомов и молекул уже не подчиняется законам Ньютона. Согласно более точным законам движения микрочастиц - законам квантовой механики - абсолютный нуль соответствует минимальному значению энергии движения, а не полному прекращению какого-либо движения вообще.

УРОК

Тема . Температура – мера средней кинетической энергии движения молекул.

Цель: формировать знания о температуре как одном из термодинамических параметров и мере средней кинетической энергии движения молекул, температурных шкалах Кельвина и Цельсия и связи между ними, об из­мерении температуры с помощью термометров.

Тип урока: урок усвоения новых знаний.

Оборудование: термометр жидкостный демонстрационный.

Ход урока

              1. Организационный этап

                Актуализация опорных знаний

                1. Имеют ли газы собственный объем?

                  Имеют ли газы форму?

                  Образуют ли газы струи? текут ли?

                  Можно ли газы сжать?

                  Как расположены в газах молекулы? Как они двигаются?

                  Что можно сказать о взаимодействии молекул в газах?

Вопросы классу

1. Почему газы при высокой температуре можно считать идеальными?

( Чем выше температура газа, тем больше кинетическая энергия теплового движения молекул, а значит, газ более близок к идеальному .)

2. Почему при высоком давлении свойства реальных газов отличаются от свойств идеального? (С ростом давления уменьшается расстояние между молекулами газа и их взаимодействием уже нельзя пренебречь .)

              1. Сообщение темы, цели и задач урока

Сообщаем тему урока.

IV . Мотивация учебной деятельности

Почему важно изучать газы, уметь описывать процессы, которые в них происходят? Обоснуйте ответ, используя усвоенные знания по физике, собственный жизненный опыт.

V. Изучение нового материала

3. Температура как термодинамический параметр идеального газа. Состояние газа описывают с помощью определенных величин, которые называют параметрами состояния. Различают:

    1. микроскопические, т.е. характеристики собственно молекул, - размеры, массу, скорость, импульс, энергию;

      макроскопические, т.е. параметры газа как физического тела - температуру, давление, объем.

Молекулярно-кинетическая теория позволяет нам понять, что представляет собой физическая сущность такого сложного понятия, как температура.

Со словом «температура» вы знакомы с раннего детства. Теперь познакомимся с температурой как параметром.

Нам известно, что разные тела могут иметь разную температуру. Следовательно, температура характеризует внутреннее состояние тела. В результате взаимодействия двух тел с разной температурой, как свидетельствует опыт, их температуры спустя, некоторое время сравняются. Многочисленные опыты свидетельствуют о том, что температуры тел, находящихся в тепловом контакте, уравниваются, т.е. между ними устанавливается тепловое равновесие.

Тепловым или термодинамическим равновесием называют такое состояние, при котором все макроскопические параметры в системе сколь угодно долго остаются неизменными . Это означает, что в системе не меняются объем и давление, не изменяются агрегатные состояния вещества, концентрации веществ. Но микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях. В системе тел, находящейся в состоянии термодинамического равновесия, объемы и давления могут быть различными, а температуры обязательно одинаковы. Таким образом, температура характеризует состояние термодинамического равновесия изолированной системы тел .

Чем быстрее двигаются молекулы в теле, тем сильнее ощущение тепла при касании. Большая скорость движения молекул соответствует большей кинетической энергии. Следовательно, по величине температуры можно составить представление о кинетической энергии молекул.

Температура - это мера кинетической энергии теплового движения молекул .

Температура - скалярная величина; в СИ измеряется в Кель винах (К).

2 . Температурные шкалы. Измерение температуры

Температура измеряется с помощью термометров, действие которых основано на явлении термодинамического равновесия, т.е. термометр - это прибор для измерения температуры путем контакта с исследуемым телом. При изготовлении термометров разного типа учитывается зависимость от температуры разных физических явлений: теплового расширения, электрических и магнитных явлений и т.п.

Их действие основано на том факте, что при изменении температуры, изменяются и другие физические параметры тела, например, такие, как давление и объем.

В 1787 году Ж. Шарль из эксперимента установил прямую пропорциональную зависимость давления газа от температуры. Из опытов следовало, что при одинаковом нагревании давление любых газов изменяется одинаково. Использование этого экспериментального факта легло в основу создания газового термометра.

Различают такие виды термометров : жидкостные, термопары, газовые, термометры сопротивления.

Основные виды шкал:

В физике в большинстве случаев пользуются введенной английским ученым У. Кельвином абсолютной шкалой температур (1848 г.), которая имеет две основные точки.

Первая основная точка - 0 К, или абсолютный нуль.

Физический смысл абсолютного нуля: это температура, при которой прекращается тепловое движение молекул .

При абсолютном нуле молекулы поступательно не двигаются. Тепловое движение молекул непрерывно и бесконечно. Следовательно, абсолютный нуль температур при наличии молекул вещества недосягаем. Абсолютный нуль температур - это самая низкая температурная граница, верхней не существует.

Вторая основная точка - это точка, в которой вода существует во всех трех состояниях (твердом, жидком и газообразном), она названа тройной точкой.

В быту для измерения температуры используют другую температурную шкалу - шкалу Цельсия, названную в честь шведского астронома А.Цельсия и введенную им в 1742 г.

На шкале Цельсия есть две основные точки: 0°С (точка, в которой тает лед) и 100°С (точка, в которой кипит вода). Температура, которую определяют по шкале Цельсия, обозначается t . Шкала Цельсия имеет как положительные, так и отрицательные значения.

Пользуясь рисунком, проследим связь между температурами по шкалам Кельвина и Цельсия.

Цена деления на шкале Кельвина такая же, как и на шкале Цельсия:

ΔT = T 2 - T 1 =( t 2 +273) - ( t 1 +273) = t 2 - t 1 = Δt .

Итак, ΔT = Δt , т.е. изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия.

Т K = t ° C + 273

0 К = -273°С

0°С =273 К

Задание классу .

Опишите жидкостный термометр как физический прибор по плану характеристики физического прибора.

Характеристика жидкостного термометра как физического прибора

    Измерение температуры.

    Запаянный стеклянный капилляр, в нижней части имеющий резервуар для жидкости, заполненный ртутью или подкрашенным спиртом. Капилляр присоединен к шкале и обычно помещен в стеклянный футляр.

    При увеличении температуры жидкость внутри капилляра расширяется и поднимается, при уменьшении температуры - опускается.

    Используется для изм . температуры воздуха, воды, тела человека и т.п.

    Диапазон температур, которые можно измерять с помощью жидкостных термометров, широк (ртутным от -35 до 75 °С, спиртовым от -80 до 70 °С). Недостатком является то, что при нагревании разные жидкости расширяются по-разному, при одинаковой температуре показания могут несколько отличаться.

3. Температура – мера средней кинетической энергии движения молекул

Опытным путем было установлено, что при постоянном объеме и температуре давление газа прямо пропорционально его концентрации. Объединяя экспериментально полученные зависимости давления от температуры и концентрации, получаем уравнение:

р = nkT , где - k=1,38×10 -23 Дж/К , коэффициент пропорциональности - постоянная Больцмана. Постоянная Больцмана связывает температуру со средней кинетической энергией движения молекул в веществе. Это одна из наиболее важных постоянных в МКТ. Температура прямо пропорциональна средней кинетической энергии теплового движения частиц вещества. Следовательно, температуру можно назвать мерой средней кинетической энергии частиц, характеризующей интенсивность теплового движения молекул. Этот вывод хорошо согласуется с экспериментальными данными, показывающими увеличение скорости частиц вещества с ростом температуры.

Рассуждения, которые мы проводили для выяснения физической сущности температуры, относятся к идеальному газу. Однако выводы, полученные нами, справедливы не только для идеального, но и для реальных газов. Справедливы они и для жидкостей и твердых тел. В любом состоянии температура вещества характеризует интенсивность теплового движения его частиц.

VII. Подведение итогов урока

Подводим итоги урока, оцениваем деятельность учащихся.

Домашнее задание

    1. Выучить теоретический материал по конспекту. § _____ стр. _____

Учитель высшей категории Л.А.Донец

Страница 5

«Физика - 10 класс»

Абсолютная температура.


Вместо температуры Θ, выражаемой в энергетических единицах, введём температуру, выражаемую в привычных для нас градусах.

Θ = kТ, (9.12)

где k - коэффициент пропорциональности.

>Определяемая равенством (9.12) температура называется абсолютной .

Такое название, как мы сейчас увидим, имеет достаточные основания. Учитывая определение (9.12), получим

По этой формуле вводится температурная шкала (в градусах), не зависящая от вещества, используемого для измерения температуры.

Температура, определяемая формулой (9.13), очевидно, не может быть отрицательной, так как все величины, стоящие в левой части этой формулы, заведомо положительны. Следовательно, наименьшим возможным значением температуры Т является значение Т = 0, если давление р или объём V равны нулю.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объёме или при которой объём идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулём температуры .

Это самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказывал Ломоносов.

Английский учёный У. Томсон (лорд Кельвин) (1824-1907) ввёл абсолютную шкалу температур. Нулевая температура по абсолютной шкале (её называют также шкалой Кельвина ) соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия.

Единица абсолютной температуры в СИ называется кельвином (обозначается буквой К).


Постоянная Больцмана.

Определим коэффициент k в формуле (9.13) так, чтобы изменение температуры на один кельвин (1 К) было равно изменению температуры на один градус по шкале Цельсия (1 °С).

Мы знаем значения величины Θ при 0 °С и 100 °С (см. формулы (9.9) и (9.11)). Обозначим абсолютную температуру при 0 °С через Т 1 , а при 100 °С через Т 2 . Тогда согласно формуле (9.12)

Θ 100 - Θ 0 = k(T 2 -T 1),

Θ 100 - Θ 0 = k 100 K = (5,14 - 3,76) 10 -21 Дж.

Коэффициент

k = 1,38 10 -23 Дж/К (9.14)

называется постоянной Больцмана в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории газов.

Постоянная Больцмана связывает температуру Θ в энергетических единицах с температурой Т в кельвинах.

Это одна из наиболее важных постоянных в молекулярно-кинетической теории.

Зная постоянную Больцмана, можно найти значение абсолютного нуля по шкале Цельсия. Для этого найдём сначала значение абсолютной температуры, соответствующее 0 °С. Так как при 0 °С kT 1 = 3,76 10 -21 Дж, то

Один кельвин и один градус шкалы Цельсия совпадают. Поэтому любое значение абсолютной температуры Т будет на 273 градуса выше соответствующей температуры t по Цельсию:

Т (К) = (f + 273) (°С). (9.15)

Изменение абсолютной температуры ΔТ равно изменению температуры по шкале Цельсия Δt: ΔТ(К) = Δt (°С).

На рисунке 9.5 для сравнения изображены абсолютная шкала и шкала Цельсия. Абсолютному нулю соответствует температура t = -273 °С.

В США используется шкала Фаренгейта. Точка замерзания воды по этой шкале 32 °F, а точка кипения 212 °Е Пересчёт температуры из шкалы Фаренгейта в шкалу Цельсия производится по формуле t(°C) = 5/9 (t(°F) - 32).

Отметим важнейший факт: абсолютный нуль температуры недостижим!


Температура - мера средней кинетической энергии молекул.


Из основного уравнения молекулярно-кинетической теории (9.8) и определения температуры (9.13) вытекает важнейшее следствие:
абсолютная температура есть мера средней кинетической энергии движения молекул .

Докажем это.

Из уравнений (9.7) и (9.13) следует, что Отсюда вытекает связь между средней кинетической энергией поступательного движения молекулы и температурой:

Средняя кинетическая энергия хаотичного поступательного движения молекул газа пропорциональна абсолютной температуре.

Чем выше температура, тем быстрее движутся молекулы. Таким образом, выдвинутая ранее догадка о связи температуры со средней скоростью молекул получила надёжное обоснование. Соотношение (9.16) между температурой и средней кинетической энергией поступательного движения молекул установлено для идеальных газов.

Однако оно оказывается справедливым для любых веществ, у которых движение атомов или молекул подчиняется законам механики Ньютона. Оно верно для жидкостей а также и для твёрдых тел, где атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решётки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул приближается к нулю, т. е. прекращается поступательное тепловое движение молекул.

Зависимость давления газа от концентрации его молекул и температуры. Учитывая, что из формулы (9.13) получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (9.17) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро, известный вам из курса химии.

Закон Авогадро:

В равных объёмах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

МКТ поведение молекул в телах можно охарактеризовать средними значениями тех или иных величин, которые относятся не к отдельным молекулам, а ко всем молекулам в целом. T, V, P

МКТ МЕХАНИЧЕСКИЕ ВЕЛИЧИНЫ V T P величина, характеризующая внутреннее состояние тела (в механике ее нет)

МКТ МАКРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ Величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел (V, P, T) называют макроскопическими параметрами.

Температура Степень нагретости тел. холодное Т 1 теплое

Температура Почему термометр не показывает температуру тела сразу после того как он соприкоснулся с ним?

Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными Устанавливается с течением времени между телами, имеющими различную температуру.

Температура Важное свойство тепловых явлений Любое макроскопическое тело (или группа макроскопических тел) при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Температура Неизменные условия значит, что в системе 1 Не изменяются объем и давление 2 Отсутствует теплообмен 3 Температура системы остается постоянной

Температура Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии 1 Меняются скорости молекул при столкновениях 2 Изменяется положение молекул

Температура Система может находиться в различных состояниях. В любом состоянии температура имеет свое строго определенное значение. Другие физические величины могут иметь разные значения, которые не изменяются со временем.

Измерение температуры Можно использовать любую физическую величину, которая зависит от температуры. Чаще всего: V = V(T) Температурные шкалы Цельсия абсолютная (шкала Кельвина) Фаренгейта

Измерение температуры Температурные шкалы Шкала Цельсия = международная практическая шкала 0°С Температура таяния льда Реперные точки P 0 = 101325 Па 100°С Температура кипения воды Реперные точки – точки, на которых основывается измерительная шкала

Измерение температуры Температурные шкалы Абсолютная шкала (шкала Кельвина) Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. 1 К = 1 °С Уильям Томсон (лорд Кельвин) Единица температуры = 1 Кельвин = К

Измерение температуры Абсолютная температура = мера средней кинетической энергии движения молекул Θ = κT [Θ] = Дж [T] = К κ – постоянная Больцмана Устанавливает связь между температурой в энергетических единицах с температурой в кельвинах

Выбор редакции
Между подлежащим (группой подлежащего) и сказуемым (группой сказуемого) из всех знаков препинания употребляется только тире. ставится на...

В русском языке существуют особенные части речи, примыкающие к существительному или глаголу. Некоторые языковеды считают их особыми...

Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны?Ъ и ЬТвердый и...

Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны? Ъ и Ь Твердый и...
Наршараб – это кисло-сладкий гранатовый соус – один из знаменитых ингредиентов кавказской кулинарии. Он легко станет любимым продуктом и...
Пикантную закуску можно приготовить для праздника или встречи гостей. Приготовление: Отрежьте ножки от шляпок, посолите их и обжарьте на...
Иметь много денег – приятно. Но к чему снятся деньги? К чему снится мелочь? Стоит разобраться. К чему снится мелочь – основное...
Этот способ приготовления болгарского перца давным-давно привезла моя мама из Молдавии - так тогда называлась Молдова, входящая в состав...
Ароматные сладкие перцы, запечённые в духовке, а потом протушенные с соусом. Вкуснейший овощной гимн лету!Европейская Ингредиенты 1 кг...