Условия выполнения опыта штерна. Штерна опыт. Суть опыта штерна


Из формул

получаем формулу для расчета средней квадратичной скорости движения молекул одноатомного газа:

где R - универсальная газовая постоянная.

Таким образом зависит от температуры и природы газа. Так, при 0°С для водорода она равна 1800 м/с. для азота - 500 м/с.

Впервые на опыте определил скорость молекул О. Штерн. В камере, из которой откачан воздух, находятся два коаксиальных цилиндра 1 и 2 (рис. 1), которые могут вращаться вокруг оси с постоянной угловой скоростью .

Вдоль оси натянута платиновая посеребренная проволока, через которую пропускают электрический ток. Она нагревается, и серебро испаряется. Атомы серебра через щель 4 в стенке цилиндра 2 попадают в цилиндр 1 и оседают на его внутренней поверхности, оставляя след в виде узкой полоски, параллельной щели. Если цилиндры неподвижны, то полоска расположена напротив щели (точка В на рис. 2, а) и имеет одинаковую толщину.

При равномерном вращении цилиндра с угловой скоростью полоска смещается в сторону, противоположную вращению, на расстояние s относительно точки В (рис. 2, б). На такое расстояние сместилась точка В цилиндра 1 за время t, которое необходимо, чтобы атомы серебра прошли расстояние, равное R - r, где R и r - радиусы цилиндров 1 и 2.

где - линейная скорость точек поверхности цилиндра 1. Отсюда

Скорость атомов серебра

Зная R, r, и измерив экспериментально s, по этой формуле можно рассчитать среднюю скорость движения атомов серебра. В опыте Штерна . Это значение совпадает с теоретическим значением средней квадратичной скорости молекул. Это служит экспериментальным доказательством справедливости формулы (1), а следовательно, и формулы (3).

В опыте Штерна было обнаружено, что ширина полоски на поверхности вращающегося цилиндра гораздо больше геометрического изображения щели и толщина ее в разных местах неодинакова (рис. 3, а). Это можно объяснить только тем, что атомы серебра движутся с различными скоростями. Атомы, летящие с некоторой скоростью, попадают в точку В’. Атомы, летящие быстрее, попадают в точку, лежащую на рисунке 2 выше точки В’, а летящие медленнее, - ниже точки В’. Таким образом, каждой точке изображения соответствует определенная скорость, которую достаточно просто определить из опыта. Этим и объясняется то, что толщина слоя атомов серебра, осевших на поверхности цилиндра, не везде одинакова. Наибольшая толщина в средней части слоя, а по краям толщина уменьшается.

Изучение формы сечения полоски осевшего серебра с помощью микроскопа показало, что она имеет вид, примерно соответствующий изображенному на рисунке 3, б. По толщине отложившегося слоя можно судить о распределении атомов серебра по скоростям.

Разобьем весь интервал измеренных на опыте скоростей атомов серебра на малые . Пусть - одна из скоростей этого интервала. По плотности слоя подсчитаем число атомов, имеющих скорость в интервале от , и построим график функции

где N - общее число атомов серебра, осевших на поверхности цилиндра. Получим кривую, изображенную на рисунке 4. Она называется функцией распределения молекул по скоростям.

Площадь заштрихованной площадки равна

т.е. равна относительному числу атомов, имеющих скорость в пределах

Мы видим, что числа частиц, имеющих скорость из разных интервалов , резко различны. Существует какая-то скорость, около значения которой находятся скорости, с которыми движется наибольшее число молекул. Она называется наиболее вероятной скоростью , и ей соответствует максимум на рисунке 4. Эта кривая хорошо соответствует кривой, полученной Дж. Максвеллом, который, пользуясь статистическим методом, теоретически доказал, что в газах, находящихся в состоянии термодинамического равновесия, устанавливается некоторое, не меняющееся со временем, распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону, графически изображаемому кривой . Наиболее вероятная скорость, как показал Максвелл, зависит от температуры газа и массы его молекул по формуле

правильность основ кинетической теории газов . Исследуемым газом в опыте служили разреженные пары серебра, которые получались при испарении слоя серебра, нанесённого на платиновую проволоку, нагревавшуюся электрическим током. Проволока располагалась в сосуде, из которого воздух был откачан, поэтому атомы серебра беспрепятственно разлетались во все стороны от проволоки. Для получения узкого пучка летящих атомов на их пути была установлена преграда со щелью, через которую атомы попадали на латунную пластинку, имевшую комнатную температуру. Атомы серебра осаждались на ней в виде узкой полоски, образуя серебряное изображение щели. Специальным устройством весь прибор приводился в быстрое вращение вокруг оси, параллельной плоскости пластинки. Вследствие вращения прибора атомы попадали в др. место пластинки: пока они пролетали расстояние l от щели до пластинки, пластинка смещалась. Смещение растет с угловой скоростью w прибора и уменьшается с ростом скорости v атомов серебра. Зная w и l , можно определить v. Т. к. атомы движутся с различными скоростями, полоска при вращении прибора размывается, становится шире. Плотность осадка в данном месте полоски пропорциональна числу атомов, движущихся с определённой скоростью. Наибольшая плотность соответствует наиболее вероятной скорости атомов. Полученные в Штерна опыт значения наиболее вероятной скорости хорошо согласуются с теоретическим значением, полученным на основе Максвелла распределения молекул по скоростям.

Статья про слово "Штерна опыт " в Большой Советской Энциклопедии была прочитана 5742 раз

Во второй половине девятнадцатого века исследование броуновского (хаотичного) движения молекул вызывало острый интерес у многих физиков-теоретиков того времени. Разработанная шотландским ученым Джеймсом вещества хоть и была общепризнанной в европейских научных кругах, но существовала лишь в гипотетическом виде. Никакого практического ее подтверждения тогда не было. Движение молекул оставалось недоступным непосредственному наблюдению, а измерение их скорости казалась просто неразрешимой научной проблемой.

Именно поэтому эксперименты, способные на практике доказать сам факт молекулярного строения вещества и определить скорость движения его невидимых частиц, изначально воспринимались как фундаментальные. Решающее значение таких экспериментов для физической науки было очевидно, так как позволяло получить практическое обоснование и доказательство справедливости одной из самых прогрессивных теорий того времени - молекулярно-кинетической.

К началу двадцатого столетия мировая наука достигла достаточного уровня развития для появления реальных возможностей экспериментальной проверки теории Максвелла. Немецкий физик Отто Штерн в 1920-м году, применив метод молекулярных пучков, который был изобретен французом Луи Дюнойе в 1911-м году, сумел измерить скорость движения газовых молекул серебра. Опыт Штерна неопровержимо доказал справедливость закона Результаты этого эксперимента подтвердили верность оценки атомов, которая вытекала из гипотетических предположений, сделанных Максвеллом. Правда, о самом характере скоростной градации опыт Штерна смог дать только весьма приблизительные сведения. Более подробной информации науке пришлось ждать еще девять лет.

С большей точностью закон распределения удалось проверить Ламмерту в 1929-м году, несколько усовершенствовавшему опыт Штерна путем пропускания молекулярного пучка сквозь пару вращающихся дисков, имевших радиальные отверстия и смещенных относительно друг друга на определенный угол. Изменяя скорость вращения агрегата и угол между отверстиями, Ламмерт смог выделить из пучка отдельные молекулы, которые обладают различными скоростными показателями. Но именно опыт Штерна положил начало экспериментальным изысканиям в области молекулярно-кинетической теории.

В 1920-м году была создана первая экспериментальная установка, необходимая для проведения экспериментов такого рода. Она состояла из пары цилиндров, сконструированных лично Штерном. Внутрь прибора был помещен тонкий платиновый стержень с серебряным напылением, которое и испарялось при нагревании оси электричеством. В условиях вакуума, которые были созданы внутри установки, узкий пучок атомов серебра проходил свозь продольную щель, прорезанную на поверхности цилиндров, и оседал на специальном внешнем экране. Разумеется, агрегат находился в движении, и за то время, пока атомы достигали поверхности, успевал повернуться на некоторый угол. Таким способом Штерн и определил скорость их движения.

Но это не единственное научное достижение Отто Штерна. Через год он совместно с Вальтером Герлахом провел эксперимент, подтвердивший наличие у атомов спина и доказавший факт их пространственного квантования. Опыт Штерна-Герлаха потребовал создания специальной экспериментальной установки с мощным в ее основе. Под воздействием магнитного поля, генерируемого этим мощным компонентом, отклонялись согласно ориентации их собственного магнитного спина.

Году. Опыт являлся одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям .

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v , определяемой температурой нагрева платиновой проволоки, т. е. температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t=\frac{s}{u}=\frac{l}{v} \Rightarrow v=\frac{ul}{s}=\frac{\omega R_{big} (R_{big}-R_{small})}{s},

где s - смещение полосы, l - расстояние между цилиндрами, а u - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее.

Напишите отзыв о статье "Опыт Штерна"

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. - Мн. : Вышэйшая школа, 1979. - С. 388. - 416 с. - 30 000 экз.

Ссылки

  • Ландсберг. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. - 12-е изд. - М .: ФИЗМАТЛИТ, 2001. - ISBN 5-9221-0135-8 .
  • Интернет-школа Просвещение.ру. (рус.) (недоступная ссылка - история ) . Проверено 5 апреля 2008.
  • Штерна опыт - статья из Большой советской энциклопедии .

Отрывок, характеризующий Опыт Штерна

Так он лежал и теперь на своей кровати, облокотив тяжелую, большую изуродованную голову на пухлую руку, и думал, открытым одним глазом присматриваясь к темноте.
С тех пор как Бенигсен, переписывавшийся с государем и имевший более всех силы в штабе, избегал его, Кутузов был спокойнее в том отношении, что его с войсками не заставят опять участвовать в бесполезных наступательных действиях. Урок Тарутинского сражения и кануна его, болезненно памятный Кутузову, тоже должен был подействовать, думал он.
«Они должны понять, что мы только можем проиграть, действуя наступательно. Терпение и время, вот мои воины богатыри!» – думал Кутузов. Он знал, что не надо срывать яблоко, пока оно зелено. Оно само упадет, когда будет зрело, а сорвешь зелено, испортишь яблоко и дерево, и сам оскомину набьешь. Он, как опытный охотник, знал, что зверь ранен, ранен так, как только могла ранить вся русская сила, но смертельно или нет, это был еще не разъясненный вопрос. Теперь, по присылкам Лористона и Бертелеми и по донесениям партизанов, Кутузов почти знал, что он ранен смертельно. Но нужны были еще доказательства, надо было ждать.
«Им хочется бежать посмотреть, как они его убили. Подождите, увидите. Все маневры, все наступления! – думал он. – К чему? Все отличиться. Точно что то веселое есть в том, чтобы драться. Они точно дети, от которых не добьешься толку, как было дело, оттого что все хотят доказать, как они умеют драться. Да не в том теперь дело.
И какие искусные маневры предлагают мне все эти! Им кажется, что, когда они выдумали две три случайности (он вспомнил об общем плане из Петербурга), они выдумали их все. А им всем нет числа!»
Неразрешенный вопрос о том, смертельна или не смертельна ли была рана, нанесенная в Бородине, уже целый месяц висел над головой Кутузова. С одной стороны, французы заняли Москву. С другой стороны, несомненно всем существом своим Кутузов чувствовал, что тот страшный удар, в котором он вместе со всеми русскими людьми напряг все свои силы, должен был быть смертелен. Но во всяком случае нужны были доказательства, и он ждал их уже месяц, и чем дальше проходило время, тем нетерпеливее он становился. Лежа на своей постели в свои бессонные ночи, он делал то самое, что делала эта молодежь генералов, то самое, за что он упрекал их. Он придумывал все возможные случайности, в которых выразится эта верная, уже свершившаяся погибель Наполеона. Он придумывал эти случайности так же, как и молодежь, но только с той разницей, что он ничего не основывал на этих предположениях и что он видел их не две и три, а тысячи. Чем дальше он думал, тем больше их представлялось. Он придумывал всякого рода движения наполеоновской армии, всей или частей ее – к Петербургу, на него, в обход его, придумывал (чего он больше всего боялся) и ту случайность, что Наполеон станет бороться против него его же оружием, что он останется в Москве, выжидая его. Кутузов придумывал даже движение наполеоновской армии назад на Медынь и Юхнов, но одного, чего он не мог предвидеть, это того, что совершилось, того безумного, судорожного метания войска Наполеона в продолжение первых одиннадцати дней его выступления из Москвы, – метания, которое сделало возможным то, о чем все таки не смел еще тогда думать Кутузов: совершенное истребление французов. Донесения Дорохова о дивизии Брусье, известия от партизанов о бедствиях армии Наполеона, слухи о сборах к выступлению из Москвы – все подтверждало предположение, что французская армия разбита и сбирается бежать; но это были только предположения, казавшиеся важными для молодежи, но не для Кутузова. Он с своей шестидесятилетней опытностью знал, какой вес надо приписывать слухам, знал, как способны люди, желающие чего нибудь, группировать все известия так, что они как будто подтверждают желаемое, и знал, как в этом случае охотно упускают все противоречащее. И чем больше желал этого Кутузов, тем меньше он позволял себе этому верить. Вопрос этот занимал все его душевные силы. Все остальное было для него только привычным исполнением жизни. Таким привычным исполнением и подчинением жизни были его разговоры с штабными, письма к m me Stael, которые он писал из Тарутина, чтение романов, раздачи наград, переписка с Петербургом и т. п. Но погибель французов, предвиденная им одним, было его душевное, единственное желание.

Изучение диффузии и броуновского движения позволяет получить некоторое представление о скорости хаотического движения молекул газа. Одним из наиболее простых и наглядных опытов для ее определения является опыт О. Штерна, выполненный им в 1920 г. Сущность этого опыта заключается в следующем.

На горизонтальном столике, который может вращаться вокруг оси О (рис. 3.2), перпендикулярно столику укрепляются цилиндрические поверхности А и В. Поверхность В сплошная, а в поверхности А имеется узкий прорез, параллельный оси О. Вдоль оси О расположена вертикально платиновая посеребренная проволока, которая включается в электрическую цепь. При пропускании тока проволока накаливается и с ее поверхности происходит испарение серебра. Молекулы серебра летят во все стороны и в основном оседают на внутренней стороне цилиндрической поверхности А. Лишь узкий пучок молекул серебра пролетает сквозь щель в этой

поверхности и оседает в области М на поверхности В. Ширина налета в М определяется шириной щели в поверхности А. Чтобы молекулы серебра не рассеивались при столкновениях с молекулами воздуха, вся установка накрывается колпаком, из-под которого выкачивается воздух. Чем уже щель в поверхности А, тем уже налет в области М и тем точнее может быть определена скорость движения молекул.

Само определение скорости основано на следующей идее. Если всю установку привести во вращение вокруг оси О с постоянной угловой скоростью то за время в течение которого молекула будет лететь от щели до поверхности В, последняя успеет повернуться и налет сместится из области М в область К. Следовательно, время полета молекулы вдоль радиуса и время смещения точки М поверхности В на расстояние одинаково. Так как молекула летит равномерно, то

где - искомая скорость, - радиус цилиндрической поверхности А. Поскольку линейная скорость точек поверхности В равна юг, то время можно выразить другой формулой:

Таким образом,

Так как при выполнении опыта остаются постоянными и определяются заранее, то, измерив можно найти скорость молекулы . В опыте Штерна она оказалась близкой к 500 м/с.

Поскольку налет в области К оказывается размытым, можно заключить, что молекулы серебра летят к поверхности В с различной скоростью. Средние значения скоростей молекул математически можно выразить формулой

В качестве примера отметим, что при 0 °С средняя скорость движения молекул водорода равна 1840 м/с, а азота - 493 м/с. Изменение толщины налета в области К дает представление о распределении молекул по скоростям их движения. Получается, что небольшое число молекул имеет скорости, в несколько раз превышающие среднюю скорость.

(Подумайте, где на рис. 3.2 оставили след молекулы, скорости которых больше средней скорости и как изменится положение налета, если усилить ток в проволоке О.)

Выбор редакции
Что такое объяснительная записка? Как правильно написать объяснительную записку начальнику на работе за отсутствие на рабочем месте или...

Общее налоговое правило по подоходному налогу гласит, что НДФЛ попадают в государственную казну автоматически. Это значит, что за...

Фото: Денис Медведев / PhotoXPress.RUВесело грызть гранит науки! Было бы на что. С 1 января 2011 г. у нас опять начнётся новая жизнь....

Между подлежащим (группой подлежащего) и сказуемым (группой сказуемого) из всех знаков препинания употребляется только тире. ставится на...
В русском языке существуют особенные части речи, примыкающие к существительному или глаголу. Некоторые языковеды считают их особыми...
Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны?Ъ и ЬТвердый и...
Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны? Ъ и Ь Твердый и...
Наршараб – это кисло-сладкий гранатовый соус – один из знаменитых ингредиентов кавказской кулинарии. Он легко станет любимым продуктом и...
Пикантную закуску можно приготовить для праздника или встречи гостей. Приготовление: Отрежьте ножки от шляпок, посолите их и обжарьте на...