Закон гука выполняется. Обобщенный закон гука


Темы кодификатора ЕГЭ: силы в механике, сила упругости, закон Гука.

Как мы знаем, в правой части второго закона Ньютона стоит равнодействующая (то есть векторная сумма) всех сил, приложенных к телу. Теперь нам предстоит изучить силы взаимодействия тел в механике. Их три вида: сила упругости, гравитационная сила и сила трения. Начинаем с силы упругости.

Деформация.

Силы упругости возникают при деформациях тел. Деформация - это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости - это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример - сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука.

Деформация называется малой , если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука . Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где - коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1) следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1 ):

Рис. 1. Закон Гука

Коэффициент жёсткости - о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

где - угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1 - это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга.

В частном случае малых деформаций стержней имеется более детальная формула, уточняющая общий вид ( 1 ) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

Здесь - модуль Юнга материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

и нормальное напряжение в поперечном сечении

т о закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, -тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.

Коэффициент упругости

Коэффицие́нт упру́гости (иногда называют коэффициентом Гука, коэффициентом жёсткости или жёсткостью пружины) - коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу упругости. Применяется в механике твердого тела в разделе упругости. Обозначается буквой k , иногда D или c . Имеет размерность Н/м или кг/с2 (в СИ), дин/см или г/с2 (в СГС).

Коэффициент упругости численно равен силе, которую надо приложить к пружине, чтобы её длина изменилась на единицу расстояния.

Определение и свойства

Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: k = F e / Δ l . {\displaystyle k=F_{\mathrm {e} }/\Delta l.} Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения S {\displaystyle S} и длины L {\displaystyle L}), записав коэффициент упругости как k = E ⋅ S / L . {\displaystyle k=E\cdot S/L.} Величина E {\displaystyle E} называется модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала стержня.

Жёсткость деформируемых тел при их соединении

Параллельное соединение пружин. Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости - пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном - уменьшается.

Параллельное соединение

При параллельном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} жёсткость системы равна сумме жёсткостей, то есть k = k 1 + k 2 + k 3 + . . . + k n . {\displaystyle k=k_{1}+k_{2}+k_{3}+...+k_{n}.}

Доказательство

В параллельном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из III закона Ньютона, F = F 1 + F 2 + . . . + F n . {\displaystyle F=F_{1}+F_{2}+...+F_{n}.} (К ним прикладывается сила F {\displaystyle F} . При этом к пружине 1 прикладывается сила F 1 , {\displaystyle F_{1},} к пружине 2 сила F 2 , {\displaystyle F_{2},} … , к пружине n {\displaystyle n} сила F n . {\displaystyle F_{n}.})

Теперь из закона Гука (F = − k x {\displaystyle F=-kx} , где x - удлинение) выведем: F = k x ; F 1 = k 1 x ; F 2 = k 2 x ; . . . ; F n = k n x . {\displaystyle F=kx;F_{1}=k_{1}x;F_{2}=k_{2}x;...;F_{n}=k_{n}x.} Подставим эти выражения в равенство (1): k x = k 1 x + k 2 x + . . . + k n x ; {\displaystyle kx=k_{1}x+k_{2}x+...+k_{n}x;} сократив на x , {\displaystyle x,} получим: k = k 1 + k 2 + . . . + k n , {\displaystyle k=k_{1}+k_{2}+...+k_{n},} что и требовалось доказать.

Последовательное соединение

При последовательном соединении n {\displaystyle n} пружин с жёсткостями, равными k 1 , k 2 , k 3 , . . . , k n , {\displaystyle k_{1},k_{2},k_{3},...,k_{n},} общая жёсткость определяется из уравнения: 1 / k = (1 / k 1 + 1 / k 2 + 1 / k 3 + . . . + 1 / k n) . {\displaystyle 1/k=(1/k_{1}+1/k_{2}+1/k_{3}+...+1/k_{n}).}

Доказательство

В последовательном соединении имеется n {\displaystyle n} пружин с жёсткостями k 1 , k 2 , . . . , k n . {\displaystyle k_{1},k_{2},...,k_{n}.} Из закона Гука (F = − k l {\displaystyle F=-kl} , где l - удлинение) следует, что F = k ⋅ l . {\displaystyle F=k\cdot l.} Сумма удлинений каждой пружины равна общему удлинению всего соединения l 1 + l 2 + . . . + l n = l . {\displaystyle l_{1}+l_{2}+...+l_{n}=l.}

На каждую пружину действует одна и та же сила F . {\displaystyle F.} Согласно закону Гука, F = l 1 ⋅ k 1 = l 2 ⋅ k 2 = . . . = l n ⋅ k n . {\displaystyle F=l_{1}\cdot k_{1}=l_{2}\cdot k_{2}=...=l_{n}\cdot k_{n}.} Из предыдущих выражений выведем: l = F / k , l 1 = F / k 1 , l 2 = F / k 2 , . . . , l n = F / k n . {\displaystyle l=F/k,\quad l_{1}=F/k_{1},\quad l_{2}=F/k_{2},\quad ...,\quad l_{n}=F/k_{n}.} Подставив эти выражения в (2) и разделив на F , {\displaystyle F,} получаем 1 / k = 1 / k 1 + 1 / k 2 + . . . + 1 / k n , {\displaystyle 1/k=1/k_{1}+1/k_{2}+...+1/k_{n},} что и требовалось доказать.

Жёсткость некоторых деформируемых тел

Стержень постоянного сечения

Однородный стержень постоянного сечения, упруго деформируемый вдоль оси, имеет коэффициент жёсткости

K = E S L 0 , {\displaystyle k={\frac {E\,S}{L_{0}}},} Е - модуль Юнга, зависящий только от материала, из которого выполнен стержень; S - площадь поперечного сечения; L 0 - длина стержня.

Цилиндрическая витая пружина

Витая цилиндрическая пружина сжатия.

Витая цилиндрическая пружина сжатия или растяжения, намотанная из цилиндрической проволоки и упруго деформируемая вдоль оси, имеет коэффициент жёсткости

K = G ⋅ d D 4 8 ⋅ d F 3 ⋅ n , {\displaystyle k={\frac {G\cdot d_{\mathrm {D} }^{4}}{8\cdot d_{\mathrm {F} }^{3}\cdot n}},} d - диаметр проволоки; d F - диаметр намотки (измеряемый от оси проволоки); n - число витков; G - модуль сдвига (для обычной стали G ≈ 80 ГПа, для пружинной стали G ≈ 78.5 ГПа, для меди ~ 45 ГПа).

Источники и примечания

  1. Упругая деформация (рус.). Архивировано 30 июня 2012 года.
  2. Dieter Meschede, Christian Gerthsen. Physik. - Springer, 2004. - P. 181 ..
  3. Bruno Assmann. Technische Mechanik: Kinematik und Kinetik. - Oldenbourg, 2004. - P. 11 ..
  4. Динамика, Сила упругости (рус.). Архивировано 30 июня 2012 года.
  5. Механические свойства тел (рус.). Архивировано 30 июня 2012 года.

10.Закон Гука при растяжении-сжатии. Модуль упругости (модуль Юнга).

При осевом растяжении или сжатии до предела пропорциональности σ pr справедлив закон Гука, т.е. закон о прямо пропорциональной зависимости между нормальными напряжениями и продольными относительными деформациями :

(3.10)

или
(3.11)

Здесь Е – коэффициент пропорциональности в законе Гука имеет размерность напряжения и называется модулем упругости первого рода , характеризующим упругие свойства материала, или модулем Юнга .

Относительной продольной деформацией называется отношение абсолютной продольной деформации участка
стержня к длине этого участка до деформации:

(3.12)

Относительная поперечная деформация будет равна: " = = b/b, где b = b 1 – b.

Отношение относительной поперечной деформации " к относительной продольной деформации , взятое по модулю, есть для каждого материала величина постоянная и называется коэффициентом Пуассона:

Определение абсолютной деформации участка бруса

В формулу (3.11) вместо и подставим выражения (3.1) и (3.12):


Отсюда получим формулу для определения абсолютного удлинения (или укорочения) участка стержня длиной :

(3.13)

В формуле (3.13) произведение ЕА называется жесткостью бруса при растяжении или сжатии, которая измеряется в кН, или в МН.

По этой формуле определяется абсолютная деформация , если на участке продольная сила постоянна. В случае, когда на участке продольная сила переменна, она определяется по формуле:

(3.14)

где N(х) – функция продольной силы по длине участка.

11.Коэффициент поперечной деформации (коэффициент Пуассона

12.Определение перемещений при растяжении-сжатии. Закон Гука для участка бруса. Определение перемещений сечений бруса

Определим горизонтальное перемещение точки а оси бруса (рис. 3.5) – u a: оно равно абсолютной деформации части бруса а d , заключенной между заделкой и сечением, проведенным через точку, т.е.

В свою очередь удлинение участка а d состоит из удлинений отдельных грузовых участков 1, 2 и 3:

Продольные силы на рассматриваемых участках:


Следовательно,



Тогда

Аналогично можно определить перемещение любого сечения бруса и сформулировать следующее правило:

перемещение любого сечения j стержня при растяжении–сжатии определяется как сумма абсолютных деформаций n грузовых участков, заключенных между рассматриваемым и неподвижным (закрепленным) сечениями, т.е.

(3.16)

Условие жесткости бруса запишется в следующем виде:

, (3.17)

где
наибольшее значение перемещения сечения, взятое по модулю из эпюры перемещений;u – допускаемое значение перемещения сечения для данной конструкции или ее элемента, устанавливаемое в нормах.

13.Определение механических характеристик материалов. Испытание на растяжение. Испытание на сжатие.

Для количественной оценки основных свойств материалов, как

Правило, экспериментально определяют диаграмму рас­тяжения в координатах  и  (рис. 2.9), На диаграмме от­мечены характерные точки. Дадим их определение.

Наибольшее напряже­ние, до которого материал следует закону Гука, назы­вается пределом про­порциональности П . В пределах закона Гука тангенс угла наклона прямой  = f () к оси  определяется величиной Е .

Упругие свойства материала сохраняются до напряжения  У , называемого пределом упругости . Под пределом упругости  У понимается такое наибольшее напряжение, до которого матери­ал не получает остаточных деформаций, т.е. после полной разгруз­ки последняя точка диаграммы совпадает с начальной точкой 0.

Величина  Т называется пределом текучести материала. Под пределом текучести понимается то напряжение, при котором происходит рост деформаций без заметного увеличения нагрузки. Если необходимо различать предел текучести при растяжении и сжатии  Т соответственно заменяется на  ТР и  ТС . При напряже­ниях больших  Т в теле конструкции развиваются пластические деформации  П , которые не исчезают при снятии нагрузки.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит на­звание предела прочности, или временного сопротивления, и обоз­начается через,  ВР (при сжатии  ВС ).

При выполнении практических расчетов реальную диаграмму (рис. 2.9) упрощают, и с этой целью применяются различные ап­проксимирующие диаграммы. Для решения задач с учетом упру­го пластических свойств материалов конструкций чаще всего применяется диаграмма Прандтля . По этой диаграмме на­пряжение изменяется от нуля до предела текучести по закону Гука  = Е , а далее при росте ,  =  Т (рис. 2.10).

Способность материалов получать остаточные деформации но­сит название пластичности . На рис. 2.9 была представлена ха­рактерная диаграмма для пластических материалов.

Рис. 2.10 Рис. 2.11

Противоположным свойству пластичности является свойство хрупкости , т.е. способность материала разрушаться без образова­ния заметных остаточных деформаций. Материал, обладающий этим свойством, называется хрупким . К хрупким материалам относятся чугун, высокоуглеродистая сталь, стекло, кирпич, бетон, природные камни. Характерная диаграмма деформации хрупких материалов изображена на рис. 2.11.

1. Что называется деформацией тела? Как формулируется закон Гука?

Вахит шавалиев

Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.
Упругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.
Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.
Силы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.
Закон Гука
Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:
Сила упругости, возникающая при деформации тела прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную смещению частиц тела:
\
где F_x- проекция силы на ось x, k-жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.
http://ru.solverbook.com/spravochnik/mexanika/dinamika/deformacii-sily-uprugosti/

Варя гусева

Деформация - это изменение формы или объёма тела. Виды деформации - растяжение или сжатия (примеры: растянуть резинку или сжать, аккордеон) , изгиб (прогнулась доска под человеком, изогнули лист бумаги) , кручение (работа отвёрткой, выжимание белья руками) , сдвиг (при торможении автомобиля шины деформируются за счёт силы трения) .
Закон Гука: Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
или
Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации.
Формула закона Гука: Fупр=kx

Закон Гука. Можно выразить формулой F= -kх или F= kх?

⚓ Выдр ☸

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды. Открыт в 1660 году английским учёным Робертом Гуком (Хуком) (англ. Robert Hooke). Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности.

Для тонкого растяжимого стержня закон Гука имеет вид:
Здесь F сила натяжения стержня, Δl - его удлинение (сжатие) , а k называется коэффициентом упругости (или жёсткостью) . Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения S и длины L) явно, записав коэффициент упругости как
Величина E называется модулем Юнга и зависит только от свойств тела.

Если ввести относительное удлинение
и нормальное напряжение в поперечном сечении
то закон Гука запишется как
В такой форме он справедлив для любых малых объёмов вещества.
[править]
Обобщённый закон Гука

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонентов) . Связывающий их тензор упругих постоянных является тензором четвёртого ранга Cijkl и содержит 81 коэффициент. Вследствие симметрии тензора Cijkl, а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:
Для изотропного материала тензор Cijkl содержит только два независимых коэффициента.

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.
[править]

короче, можно и так, и так, смотря что вы хотите указать в итоге: просто модуль силы Гука или еще и направление этой силы. Строго говоря, конечно, -kx, т. к. сила Гука направлена против положительного приращения координаты конца пружины.

Закон пропорциональности удлинения пружины приложенной силе был открыт английским физиком Робертом Гуком (1635-1703г.)

Научные интересы Гука были столь широки, что он часто не успевал доводить свои исследования до конца. Это давало повод к острейшим спорам о приоритете в открытии тех или иных законов с крупнейшими учеными (Гюйгенс, Ньютоном и др.). Однако закон Гука был настолько убедительно обоснован многочисленными периментами, что тут приоритет Гука никогда не оспаривался.

Теория пружины Роберта Гука:

В этом и состоит закон Гука!


РЕШЕНИЕ ЗАДАЧ

Определить жесткость пружины, которая под действием силы 10 Н удлинилась на 5 см.

Дано:
g = 10 H/кг
F = 10H
X = 5см = 0,05м
Найти:
k = ?

Груз находится в равновесии.

Ответ: жесткость пружины k = 200H/м.


ЗАДАЧА НА "5"

(сдаем на листочке).

Объясните, почему безопасен прыжок акробата на сетку батута с большой высоты? (призываем на помощь Роберта Гука)
С нетерпением жду ответа!


МАЛЕНЬКИЙ ОПЫТ

Поставьте вертикально резиновую трубку, на которую предварительно туго надето металлическое кольцо, и растяните трубку. Что при этом произойдет с кольцом?



Динамика - Класс!ная физика

Падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.

Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силой , равной силе тяжести, но направленной в противоположную сторону. Что это за сила?
На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34,б). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости .

Рисунок 34. Сила упругости.

Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб . Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры.

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27,б).
Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем.Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х, а силу упругости - через F упр, то закону Гука можно придать следующую математическую форму:
F упр = kx
где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид
ceiiinosssttuv .
Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:
tu tensio, sic vis
(что в переводе с латинского означает: каково растяжение, такова и сила). "Сила любой пружины,- писал Гук,- пропорциональна ее растяжению".

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно б миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за "лучное разоружение" не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.

Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.

Вопросы.

1. В каких случаях возникает сила упругости?

2. Что называют деформацией? Приведите примеры деформаций.

3. Сформулируйте закон Гука.

4. Что такое жесткость?

5. Чем отличаются упругие деформации от пластических?

Отослано читателями из интернет-сайтов

Учебники и книги по всем предметам, планы конспектов уроков с физики 7 класс, рефераты и конспекты уроков физика 7 класс, скачать учебники бесплатно, готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Вконтакте

Именно физика является основой основ, именно эта лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо , значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

  • среда;
  • сила.

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение : деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

где — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

Но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться. На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 , из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Найдем численное значение деформации пружины:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин :

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от);
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

Следует признать, что эта величина более содержательна, чем , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Закон Гука и упругие деформации

Вывод

Сформулируем закон Гука при растяжении и сжатии : при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Выбор редакции
Если вы любите лимоны, это печенье станет вашим любимым. В нем сочетается нежное рассыпчатое песочное тесто и яркий вкус цитрусовых. Если...

Семга... Как много в этом слове. Любите ли вы рыбу семейства лососевых как люблю её я? Есть множество рецептов её приготовления. Семгу,...

Рецепт булочек с банановой начинкой с пошаговым приготовлением. Тип блюда: Выпечка, Булочки Сложность рецепта: Сложный рецепт...

Свекла, 5 штучек; Морковка, 4 штучки;Твердый сыр, 200 граммов;Грецкие орехи, 200 граммов;Майонез;Свежая зелень;Чеснок, несколько...
Пришли холода, но это не значит, что пора вкусных витаминов закончилась. А как же всеми любимое лакомство - солнечная хурма? Это не...
Невероятно вкусный и нежный, сытный и питательный – паштет из куриной печени, готовится быстро и достаточно просто. Из минимального...
Маленькие круглые булочки, напоминающие кексики, выпекающиеся в специальных силиконовых формах, называются маффинами. Они могут быть...
И снова делюсь с вами, дорогие мои, рецептом приготовления домашнего хлеба, да не простого, а тыквенного! Могу сказать, что отношение к...
Отварите картофель для начинки. Выберите три средних клубня, хорошо промойте от земли и другой грязи, поместите в холодную воду,...