Что такое биотехнология? Основные направления и достижения. Биотехнология и человек


(Это "заготовка" для студенческого доклада по биотехнологии, которую следует самостоятельно дополнить и расширить.)

План

    Определение понятия "биотехнология".

    Исторические предпосылки биотехнологии.

    История современной биотехнологии.

    Основные методы биотехнологии.

    Значение биотехнологии и перспективы.

Понятию "биотехнология" можно дать много близких друг другу по смыслу определений.

1. Определение понятия "биотехнология"

Варианты определений понятия "биотехнология"

1-е (принадлежит инженеру Эреки, впервые сформулировавшему понятие биотехнологии) : Это все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты.
2-е: Это совокупность промышленных методов, использующих живые организмы.
3-е: Это использование живых организмов или биологических процессов промышленным способом.
4-е: Это прикладная наука, использующая методы генной и клеточной инженерии для получения биологической продукции промышленным способом.

5-е. Биотехнология – это не производство, а исследования в области промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов (Б. Глик, Дж. Пастернак, 2002).

Биотехнология в широком смысле - это научная дисциплина и сфера практики, пограничная между биологией и техникой, которая использует технологические процессы в работе с биологическими объектами или, наоборот, использует биологические объекты в технологических процессах.

В целом, биотехнология изучает пути и методы изменения окружающей человека природной среды в соответствии с его потребностями с помощью биологических объектов, включённых в технологические процессы.

Биотехнология в узком смысле - это совокупность методов и приемов получения нужных для человека продуктов с помощью биологических объектов. В состав биотехнологии входят генная, клеточная и экологическая инженерии.

Биотехнология, или технология биопроцессов - это производственное использование биологических структур для получения пищевых и промышленных продуктов, а также для осуществления целевых превращений.

Биологические структуры (биологические объекты) - это микроорганизмы, растительные и животные клетки, клеточные компоненты: мембраны клеток, рибосомы, митохондрии, хлоропласты, а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии, новую биопроцессорную технику, и более традиционные формы биопроцессов. Так, обычное производство спирта в процессе брожения – «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - «новая» биотехнология.

Термин «биотехнология» впервые предложил венгерский инженер Карл Эреки (1917), когда описывал производство свинины (конечный продукт) с использованием сахарной свеклы (сырье) в качестве корма для свиней (биотрансформация).

Под биотехнологией К. Эреки понимал «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты». Все последующие определения этого понятия - всего лишь вариации пионерской и классической формулировки К. Эреки.

Современная биотехнология - это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения.

Методы биотехнологии могут применяться на следующих уровнях: молекулярном (манипуляция с отдельными частями гена), генном, хромосомном, уровне плазмид, клеточном, тканевом, организменном и популяционном.

Стэнли Коэн и Герберт Бойер в 1973 г. разработали метод переноса гена из одного организма в другой. Коэн писал: «...есть надежда, что удастся ввести в Е. coli гены, ассоциированные с метаболическими или синтетическими функциями присущими другим биологическим видам, например, гены фотосинтеза или продукции антибиотиков». С их работы началась новая эра в молекулярной биотехнологии. Было разработано большое число методик, позволяющих 1) идентифицировать 2) выделять; 3) давать характеристику; 4) использовать гены.

В 1978 г. сотрудники фирмы «Genetech» (США) впервые выделили последовательности ДНК, кодирующие инсулин человека, и перенесли их в клонирующие векторы, способные реплицироваться в клетках Escherichia coli. Этот препарат мог использоваться больными диабетом, у которых наблюдалась аллергическая реакция на инсулин свиньи.

В настоящее время молекулярная биотехнология дает возможность получать огромное количество продуктов: инсулин, интерферон, «гормоны роста», вирусные антигены, огромное количество белков, лекарственных препаратов, низкомолекулярные вещества и макромолекулы.

Использование клеточных технологий для промышленного получения биологически активных веществ растительного происхождения

Институт физиологии растений им. К.А.Тимирязева РАН, Москва, 127276

Использование биологически активных веществ (БАВ) растительного происхождения часто ограничено доступностью растительных ресурсов и может представлять серьезную угрозу для редких видов лекарственных растений. Культуры клеток высших растений могут служить возобновляемым источником ценных вторичных метаболитов, однако до настоящего времени известны лишь единичные примеры их коммерческого применения. Основными причинами сложившейся ситуации являются недостаточная продуктивность культур клеток по вторичным метаболитам и высокая стоимость выращивания. Используя традиционные методы -селекцию продуктивных штаммов, оптимизацию сред, элиситацию, добавление предшественников синтеза - можно повысить продуктивность культур клеток растений на один-два порядка. Методы метаболической инженерии - суперэкспрессия или выключение генов белков, определяющих синтез целевого продукта - могут существенно изменять биосинтетические способности клеток in vitro. В то же время, многие вторичные соединения не удалось пока получить в культуре клеток, что может быть обусловлено спецификой клеточной культуры - экспериментально созданной популяции соматических клеток - как биологической системы. Для этих случаев может оказаться эффективным использование культур органов растений или трансформированных корней (hairy root). Проводятся работы по получению вторичных метаболитов растений в дрожжах и бактериях, трансформированных растительными генами.

Литература:

(Указать использованную для составления данного доклада литературу, включая сайты Интернета.)

В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных ценных веществ и продуктов с использованием природных биологических объектов (микроорганизмов, растительных и животных клеток), частей клеток (клеточных мембран, рибосом, митохондрий, хлоропластов) и процессов.

Корни биотехнологии уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, такой биотехнологический процесс, как брожение с участием микроорганизмов, был известен и широко применялся еще в древнем Вавилоне, о чем свидетельствует описание приготовления пива, дошедшее до нас виде записи на дощечке, обнаруженной в 1981 г. при раскопках Вавилона.

Наукой биотехнология стала благодаря исследованиям и работам французского ученого, основоположника современной микробиологии и иммунологии Луи Пастера (1822-1895).

В ХХ веке происходило бурное развитие молекулярной биологии и генетики с применением достижений химии и физики. Важнейшим направлением исследований явилась разработка методов культивирования клеток растений и животных. И если еще совсем недавно для промышленных целей выращивали только бактерии и грибы, то сейчас появилась возможность не только выращивать любые клетки для производства биомассы, но и управлять их развитием, особенно у растений. Таким образом, новые научно-технологические подходы воплотились в разработку биотехнологических методов, позволяющих манипулировать непосредственно генами, создавать новые продукты, организмы и изменять свойства уже существующих. Главная цель применения этих методов - более полное использование потенциала живых организмов в интересах хозяйственной деятельности человека.
В 70-е годы появились и активно развивались такие важнейшие области биотехнологии, как генетическая (или генная) и клеточная инженерия, положившие начало «новой» биотехнологии, в отличие от «старой» биотехнологии, основанной на традиционных микробиологических процессах. Так, обычное производство спирта в процессе брожения - это "старая" биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта, - "новая" биотехнология.

Технологии с приставкой «био»

Генная и клеточная инженерия
Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии.
Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами.

Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Исторически, выделяют «три волны» в создании генно-модифицированных растений:

Вторая волна - начало 2000-х годов - создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д.

Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации - пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа.

Учёные также предполагают, что перенос генов поможет снизить аллергию человека к коровьему молоку. Целенаправленные изменения в ДНК коров должны привести также к уменьшению содержания в молоке насыщенных жирных кислот и холестерина, что сделает его еще более полезным для здоровья.
Потенциальная опасность применения генетически модифицированных организмов выражается в двух аспектах: безопасность продовольствия для здоровья людей и экологические последствия. Поэтому важнейшим этапом при создании генно-модифицированного продукта должна быть его всесторонняя экспертиза во избежание опасности того, что продукт содержит протеины, вызывающие аллергию, токсичные вещества или какие-то новые опасные компоненты.

Значение биотехнологий для медицины.
Помимо широкого применения в сельском хозяйстве, на основе генной инженерии возникла целая отрасль фармацевтической промышленности, называемая “индустрией ДНК” и представляющая собой одну из современных ветвей биотехнологии. Более четверти всех лекарств, используемых сейчас в мире, содержат ингредиенты из растений. Генно-модифицированные растения являются дешевым и безопасным источником для получения полностью функциональных лекарственных белков (антител, вакцин, ферментов и др.) как для человека, так и для животных. Примерами применения генной инженерии в медицине являются также производство человеческого инсулина путем использования генно-модифицированных бактерий, производство эритропоэтина (гормона, стимулирующего образование эритроцитов в костном мозге. Физиологическая роль данного гормона состоит в регуляции продукции эритроцитов в зависимости от потребности организма в кислороде) в культуре клеток (т.е. вне организма человека) или новых пород экспериментальных мышей для научных исследований.

Разработка методов генной инженерии, основанных на создании рекомбинантных ДНК, привела к тому "биотехнологическому буму", свидетелями которого мы являемся. Благодаря достижениям науки в этой области стало возможным не только создание «биологических реакторов», трансгенных животных, генно-модифицированных растений, но и проведение генетической паспортизации (полного исследования и анализа генотипа человека, проводимого, как правило, сразу после рождения, для определения предрасположенности к различным заболеваниям, возможную неадекватную (аллергическую) реакцию на те или иные лекарства, а также склонность к определенным видам деятельности). Генетическая паспортизация позволяет прогнозировать и уменьшать риски сердечно-сосудистых и онкологических заболеваний, исследовать и предотвращать нейродегенеративные заболевания и процессы старения, анализировать нейро-физиологические особенности личности на молекулярном уровне), диагностирование генетических заболеваний, создание ДНК-вакцин, генотерапия различных заболеваний и т.д.

В XX веке в большинстве стран мира основные усилия медицины были направлены на борьбу с инфекционными заболеваниями, снижение младенческой смертности и увеличение средней продолжительности жизни. Страны с более развитой системой здравоохранения настолько преуспели на этом пути, что сочли возможным сместить акцент на лечение хронических заболеваний, болезней сердечно-сосудистой системы и онкологических заболеваний, поскольку именно эти группы болезней давали наибольший процент прироста смертности.

Одновременно шли поиски новых методов и подходов. Существенным явилось то, что наукой была доказана значительная роль наследственной предрасположенности в возникновении таких широко распространённых болезней, как ишемическая болезнь сердца, гипертония, язвенная болезнь желудка и двенадцатиперстной кишки, псориаз, бронхиальная астма и др. Стало очевидным, что для эффективного лечения и профилактики этих болезней, встречающихся в практике врачей всех специальностей, необходимо знать механизмы взаимодействия средовых и наследственных факторов в их возникновении и развитии, а, следовательно, дальнейший прогресс в здравоохранении невозможен без развития биотехнологических методов в медицине. В последние годы именно эти направления считаются приоритетными и бурно развиваются.

Актуальность проведения достоверных генетических исследований, основанных на биотехнологических подходах, очевидна еще и потому, что к настоящему времени известно уже более 4000 наследственных болезней. Около 5-5,5% детей рождаются с наследственными или врождёнными заболеваниями. Не менее 30% детской смертности во время беременности и в послеродовом периоде обусловлено врождёнными пороками развития и наследственными болезнями. После 20-30 лет начинают проявляться многие заболевания, к которым у человека была только наследственная предрасположенность. Это происходит под воздействием различных средовых факторов: условия жизни, вредные привычки, осложнения после перенесенных болезней и т.д.

В настоящее время уже появились практические возможности значительно снизить или скорректировать негативное воздействие наследственных факторов. Медицинская генетика объяснила, что причиной многих генных мутаций является взаимодействие с неблагоприятными условиями среды, а, следовательно, решая экологические проблемы можно добиться снижения заболеваемости раком, аллергией, сердечно-сосудистыми заболеваниями, сахарным диабетом, психическими болезнями и даже некоторыми инфекционными заболеваниями. Вместе с тем, ученым удалось выявить гены, ответственные за проявление различных патологий и способствующие увеличению продолжительности жизни. При использовании методов медицинской генетики хорошие результаты получены при лечении 15% болезней, в отношении почти 50% заболеваний наблюдается существенное улучшение.

Таким образом, значительные достижения генетики позволили не только выйти на молекулярный уровень изучения генетических структур организма, но и вскрыть сущность многих серьезных болезней человека, вплотную подойти к генной терапии.

Кроме того, на основе медико-генетических знаний появились возможности для ранней диагностики наследственных болезней и своевременной профилактики наследственной патологии.

Важнейшим направлением медицинской генетики в настоящее время является разработка новых методов диагностики наследственных заболеваний, в том числе и болезней с наследственной предрасположенностью. Сегодня уже никого не удивляет предимплантационная диагностика - метод диагностики эмбриона на ранней стадии внутриутробного развития, когда врач-генетик, извлекая лишь одну клетку будущего ребенка с минимальной угрозой для его жизни, ставит точный диагноз или предупреждает о наследственной предрасположенности к той или иной болезни.

Как теоретическая и клиническая дисциплина медицинская генетика продолжает интенсивно развиваться в разных направлениях: изучение генома человека, цитогенетика, молекулярная и биохимическая генетика, иммуногенетика, генетика развития, популяционная генетика, клиническая генетика.
Благодаря все более широкому применению биотехнологических методов в фармацевтике и медицине появилось новое понятие «персонализированной медицины», когда лечение пациента осуществляется на основе его индивидуальных, в том числе генетических особенностей, и даже препараты, используемые в процессе лечения, изготавливаются индивидуально для каждого конкретного пациента с учетом его состояния. Появление таких препаратов стало возможным, в частности, благодаря применению такого биотехнологического метода, как гибридизация (искусственное слияние) клеток. Процессы гибридизации клеток и получения гибридов еще до конца не изучены и не отработаны, но важно, что с их помощью стало возможным нарабатывать моноклональные антитела. Моноклональные антитела - это специальные «защитные» белки, которые продуцируются клетками иммунной системы человека в ответ на появление в крови любых чужеродных агентов (называемых антигенами): бактерий, вирусов, ядов и т.д. Моноклональные антитела обладают необыкновенной, уникальной специфичностью, и каждое антитело узнает только свой антиген, связывается с ним и делает его безопасным для человека. В современной медицине моноклональные антитела широко используются в диагностических целях. В настоящее время они применяются также в качестве высокоэффективных препаратов для индивидуального лечения пациентов, страдающих такими тяжелыми заболеваниями, как рак, СПИД и др.

Клонирование

Клонирование - это один из методов, применяемых в биотехнологии для получения идентичных потомков при помощи бесполого размножения. Иначе клонирование можно определить как процесс изготовления генетически идентичных копий отдельной клетки или организма. То есть полученные в результате клонирования организмы похожи не только внешне, но и генетическая информация, заложенная в них, абсолютно одинакова.

Термин «клонирование» происходит от английского слова clone, cloning (веточка, побег, отпрыск), которое обозначает группу растений (например, фруктовых деревьев), полученных от одного растения-производителя вегетативным (не семенным) способом. Позже название «клонирование» было перенесено на разработанную технологию получения идентичных организмов, именуемую также «замещение клеточного ядра». Организмы, полученные по такой технологии, стали называться клонами. В конце 1990-х годов XX века стала очевидна возможность применения этой технологии для получения генетически идентичных человеческих индивидов, то есть стало реальным клонирование человека.

В природе клонирование широко распространено у различных организмов. У растений естественное клонирование происходит при различных способах вегетативного размножения, у животных - при партеногенезе и различных формах полиэмбрионии (полиэмбриония: от «поли-» и греч. embrion - «зародыш» - образование у животных нескольких зародышей (близнецов) из одной зиготы в результате ее неправильного деления вследствие воздействия случайных факторов). У людей примером полиэмбрионии может служить рождение однояйцевых близнецов, которые являются естественными клонами. Широко распространено клональное размножение среди ракообразных и насекомых.

Первым искусственно клонированным многоклеточным организмом стала в 1997 г. овца Долли. В 2007 году одного из создателей клонированной овцы Елизавета II наградила за это научное достижение рыцарским званием.

Сутью техники «ядерного переноса», используемой при клонировании, является замена собственного клеточного ядра оплодотворенной яйцеклетки на ядро, извлеченное из клетки организма, точную генетическую копию которого планируется получить. К настоящему времени разработаны не только методы воспроизведения того организма, из которого клетка была взята, но и того, от которого был взят генетический материал. Появилась потенциальная возможность воспроизведения умершего организма, даже в том случае, когда от него остались минимальные части - необходимо только, чтобы из них можно было выделить генетический материал (ДНК).

Клонирование организмов может быть полным или частичным. При полном клонировании воссоздаётся весь организм целиком, а при частичном - воссоздаются лишь те или иные ткани организма.

Технология воссоздания целого организма крайне перспективна в случае необходимости сохранения редких видов животных или для восстановления исчезнувших видов.

Частичное клонирование - может стать важнейшим направлением в медицине, поскольку клонированные ткани могут компенсировать недостаток и дефекты собственных тканей организма человека и, что особенно существенно, они не отторгаются при трансплантации. Такое терапевтическое клонирование изначально не предполагает получение целого организма. Его развитие сознательно останавливают на ранних стадиях, а получившиеся клетки, которые называются эмбриональные стволовые клетки (эмбриональные или зародышевые стволовые клетки - самые примитивные клетки, возникающие на ранних стадиях развития эмбриона, способные развиться во все клетки взрослого организма), используют для выработки нужных тканей или других биологических продуктов. Экспериментально доказано, что терапевтическое клонирование может быть также с успехом применено для лечения некоторых заболеваний человека, до сих пор считающихся неизлечимыми (болезнь Альцгеймера, болезнь Паркинсона, инфаркт, инсульт, диабет, рак, лейкемия и др.), позволит избегать рождения детей с синдромом Дауна и другими генетическими заболеваниями. Ученые видят возможность успешного использования методов клонирования в борьбе со старением и для увеличения продолжительности жизни. Важнейшим приложением этой технологии является и область репродукции - при бесплодии, как женском, так и мужском.

Новые перспективы открываются также для применения клонирования в сельском хозяйстве и животноводстве. Путём клонирования можно получать животных с высокой продуктивностью яиц, молока, шерсти или таких животных, которые выделяют нужные человеку ферменты (инсулин, интерферон и др.). Комбинируя методы генной инженерии с клонированием, можно вывести трансгенные сельскохозяйственные растения, которые смогут сами себя защищать от вредителей или будут устойчивы к определённым болезням.

Здесь были перечислены только некоторые из возможностей, которые открываются, благодаря применению этой новейшей технологии. Однако, при всех своих достоинствах и перспективах, столь важных для решения многих проблем человечества, клонирование является одной из самых обсуждаемых областей науки и медицинской практики. Это связано с нерешенностью целого комплекса морально-этических и правовых аспектов, связанных с манипуляциями с половыми и стволовыми клетками, судьбой эмбриона и клонированием человека.

Некоторые этические и правовые аспекты применения биотехнологических методов

Этика - учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика - часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.
В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Новейшие биотехнологии создают огромные возможности вмешательства в жизнедеятельность живых организмов и неизбежно ставят человека перед нравственным вопросом: до какого предела допустимо вторжение в природные процессы? Любая дискуссия по биотехнологической проблематике не ограничивается научной стороной дела. В ходе этих дискуссий нередко высказываются диаметрально противоположные точки зрения по поводу применения и дальнейшего развития конкретных биотехнологических методов, прежде всего таких, как:
- генная инженерия,
- пересадка органов и клеток в терапевтических целях;
- клонирование - искусственное создание живого организма;
- использование препаратов, влияющих на физиологию нервной системы, для модификации поведения, эмоционального восприятия мира и т.д.

Практика, существующая в современных демократических обществах, показывает, что эти дискуссии абсолютно необходимы не только для более полного понимания всех «плюсов» и «минусов» применения методов, вторгающихся в личную жизнь человека уже на уровне генетики. Они позволяют также обсудить морально-этические аспекты и определить отдаленные последствия применения биотехнологий, что в свою очередь, помогает законодателям создавать адекватную правовую базу, регулирующую данную сферу деятельности в интересах защиты прав личности.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.
В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

Выделение этих клеток производят из эмбрионов и плодов человека 5-8 недель развития, полученных при медицинском прерывании беременности (в результате аборта), что порождает многочисленные вопросы относительно этической и юридической правомерности проведения исследований на эмбрионах человека, в том числе такие:
- насколько необходимы и оправданы научные исследования на эмбриональных стволовых клетках человека?
- допустимо ли ради прогресса медицины разрушать человеческую жизнь и насколько это морально?
- достаточно ли проработана правовая база для применения этих технологий?

Все эти вопросы решались бы гораздо проще, если бы существовало универсальное понимание, что такое «начало жизни», с какого момента можно говорить о «личности, нуждающейся в защите прав» и что подлежит защите: половые клетки человека, эмбрион с момента оплодотворения, плод с какого-то определенного этапа внутриутробного развития или человек с момента его появления на свет? У каждого из вариантов есть свои сторонники и противники, и вопрос о статусе половых клеток и эмбриона не нашел своего окончательного решения еще ни в одной стране мира.

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования. В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Ученые стараются четко разграничивать "репродуктивное" клонирование, цель которого - создание клона, то есть целого живого организма, идентичного другому организму по генотипу, и "терапевтическое" клонирование, применяемое для выращивания колонии стволовых клеток.

В случае стволовых клеток проблемы статуса эмбриона и клонирования приобретают новое измерение. Это связано с мотивацией данного рода научных исследований, а именно применение их для поиска новых, более эффективных способов лечения тяжелых и даже неизлечимых заболеваний. Поэтому в некоторых странах (таких как США, Канада, Англия), где до последнего времени считалось недопустимым использовать эмбрионы и технологии клонирования в терапевтических целях, происходит изменение позиции общества и государства в сторону допустимости их применения в целях лечения таких заболеваний, как рассеянного склероза, болезней Альцгеймера и Паркинсона, постмиокардиального инфаркта, недостаточности регенерации костной или хрящевой ткани, при черепно-лицевых травмах, диабете, миодистрофии и др.

В то же время терапевтическое клонирование многими рассматривается как первый шаг к репродуктивному клонированию, которое встречает крайне негативное отношение во всем мире, и на него повсеместно наложен запрет.

Клонирование человека в настоящее время официально нигде не осуществляется. Опасность в его применении в репродуктивных целях видят в том, что техника клонирования исключает естественное и свободное слияние генетического материала отца и матери, что воспринимается как вызов достоинству человека. Нередко говорится о проблемах самоидентификации клона: кого он должен считать родителями, почему он является генетической копией кого-то другого? Кроме того, клонирование сталкивается с некоторыми техническими препятствиями, которые подвергают опасности здоровье и благополучие клона. Есть факты, свидетельствующие о быстром старении клонов, возникновении у них многочисленных мутаций. В соответствии с техникой клонирования, клон вырастает из взрослой - не половой, а соматической клетки, в генетической структуре которой на протяжении многих лет происходили так называемые соматические мутации. Если при естественном оплодотворении мутировавшие гены одного родителя компенсируются нормальными аналогами другого родителя, то при клонировании такой компенсации не происходит, что значительно увеличивает для клона риск заболеваний, вызываемых соматическими мутациями, и многих тяжелых заболеваний (рака, артрита, иммунодефицитов). Помимо прочего, у некоторых людей возникает страх перед клонированным человеком, перед его возможным превосходством в физическом, моральном и духовном развитии (российский врач-психиатр В. Яровой считает, что этот страх носит характер психического расстройства (фобии) и даже присвоил ему в 2008 г. название «бионализм»).

Здесь были обсуждены только некоторые из многочисленных проблем, которые возникают в связи с бурным развитием биотехнологий и вторжением их в жизнь человека. Безусловно, прогресс науки остановить нельзя и вопросы, которые она ставит, возникают быстрее, чем общество может на них найти ответы. Справиться с этим положением дел можно лишь понимая, насколько важно широко обсуждать в обществе этические и правовые проблемы, которые появляются по мере развития и внедрения в практику биотехнологий. Наличие колоссальных идеологических расхождений по этим вопросам вызывает осознанную необходимость серьезного государственного регулирования в этой сфере.

От «биотехнологии» к «биоэкономике»

Исходя из вышесказанного, можно сделать вывод о том, что передовые биотехнологии способны играть существенную роль в улучшении качества жизни и здоровья человека, обеспечении экономического и социального роста государств (особенно в развивающихся странах).

С помощью биотехнологии могут быть получены новые диагностические средства, вакцины и лекарственные препараты. Биотехнология может помочь в увеличении урожайности основных злаковых культур, что особенно актуально в связи с ростом численности населения Земли. Во многих странах, где большие объёмы биомассы не используются или используются не полностью, биотехнология могла бы предложить способы их превращения в ценные продукты, а также переработки с использованием биотехнологических методов для производства различных видов биотоплива. Кроме того, при правильном планировании и управлении биотехнология может найти применение в небольших регионах как инструмент индустриализации сельской местности для создания небольших производств, что обеспечит более активное освоение пустующих территорий и будет решать проблему занятости населения.

Особенностью развития биотехнологии в XXI веке является не только ее бурный рост как прикладной науки, она все более широко входит в повседневную жизнь человека, и что еще более существенно - обеспечивая исключительные возможности для эффективного (интенсивного, а не экстенсивного) развития практически всех отраслей экономики, становится необходимым условием устойчивого развития общества, и тем самым оказывает трансформирующее влияние на парадигму развития социума в целом.

Широкое проникновение биотехнологий в экономику мирового хозяйства нашло свое отражение и в том, что сформировались даже новые термины для обозначения глобальности данного процесса. Так, применение биотехнологических методов в промышленном производстве, стали называть «белая биотехнология», в фармацевтическом производстве и медицине - «красная биотехнология», в сельскохозяйственном производстве и животноводстве - «зеленая биотехнология», а для искусственного выращивания и дальнейшей переработки водных организмов (аквакультура или марикультура) - «синяя биотехнология». А экономика, интегрирующая все эти инновационные области, получила название «биоэкономика». Задача перехода от традиционной экономики к экономике нового типа - биоэкономике, основанной на инновациях и широко использующей возможности биотехнологии в различных отраслях производства, а также в повседневной жизни человека, уже объявлена стратегической целью во многих странах мира.

Татьяна Гаева, к.б.н,

Общество биотехнологов России им. Ю.А. Овчинникова

Условно можно выделить следующие основные направления биотехнологии:

1) биотехнология пищевых продуктов;

2) биотехнология препаратов для сельского хозяйства;

3) биотехнология препаратов и продуктов для промышленного и бытового использования;

4) биотехнология лекарственных препаратов;

5) биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Генная и клеточная инженерия - являются важнейшими методами (инструментами), лежащими в основе современной биотехнологии. Методы клеточной инженерии направлены на конструирование клеток нового типа. Они могут быть использованы для воссоздания жизнеспособной клетки из отдельных фрагментов разных клеток, для объединения целых клеток, принадлежавших различным видам с образованием клетки, несущей генетический материал обеих исходных клеток, и других операций.

Генно-инженерные методы направлены на конструирование новых, не существующих в природе сочетаний генов. В результате применения генно-инженерных методов можно получать рекомбинантные (модифицированные) молекулы РНК и ДНК, для чего производится выделение отдельных генов (кодирующих нужный продукт), из клеток какого-либо организма. После проведения определенных манипуляций с этими генами осуществляется их введение в другие организмы (бактерии, дрожжи и млекопитающие), которые, получив новый ген (гены), будут способны синтезировать конечные продукты с измененными, в нужном человеку направлении, свойствами. Иными словами, генная инженерия позволяет получать заданные (желаемые) качества изменяемых или генетически модифицированных организмов или так называемых «трансгенных» растений и животных.

Наибольшее применение генная инженерия нашла в сельском хозяйстве и в медицине.

Люди всегда задумывались над тем, как можно научиться управлять природой, и искали способы получения, например, растений с улучшенными качествами: с высокой урожайностью, более крупными и вкусными плодами или с повышенной холодостойкостью. С давних времен основным методом, который использовался в этих целях, была селекция. Она широко применяется до настоящего времени и направлена на создание новых и улучшение уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для человека признаками и свойствами. Селекция строится на отборе растений (животных) с выраженными благоприятными признаками и дальнейшем скрещивании таких организмов, в то время как генная инженерия позволяет непосредственно вмешиваться в генетический аппарат клетки. Важно отметить, что в ходе традиционной селекции получить гибриды с искомой комбинацией полезных признаков весьма сложно, поскольку к потомству передаются очень большие фрагменты геномов каждого из родителей, в то время как генно-инженерные методы позволяют работать чаще всего с одним или несколькими генами, причем их модификации не затрагивают работу других генов. В результате, не теряя других полезных свойств растения, удается добавить еще один или несколько полезных признаков, что весьма ценно для создания новых сортов и новых форм растений. Стало возможным изменять у растений, например, устойчивость к климату и стрессам, или их чувствительность к насекомым или болезням, распространённым в определённых регионах, к засухе и т.д. Учёные надеются даже получить такие породы деревьев, которые были бы устойчивы к пожарам. Ведутся широкие исследования по улучшению пищевой ценности различных сельскохозяйственных культур, таких как кукуруза, соя, картофель, томаты, горох и др.

Исторически, выделяют «три волны» в создании генно-модифицированных растений:

Вторая волна начало 2000-х годов создание растений с новыми потребительскими свойствами: масличные культуры с повышенным содержанием и измененным составом масел, фрукты и овощи с большим содержанием витаминов, более питательные зерновые и т.д.

В наши дни ученые создают растения «третьей волны», которые в ближайшие 10 лет появятся на рынке: растения-вакцины, растения-биореакторы для производства промышленных продуктов (компонентов для различных видов пластика, красителей, технических масел и т.д.), растения - фабрики лекарств и т.д. Генно-инженерные работы в животноводстве имеют другую задачу. Вполне достижимой целью при современном уровне технологии является создание трансгенных животных с определённым целевым геном. Например, ген какого-нибудь ценного гормона животного (например, гормона роста) искусственно внедряется в бактерию, которая начинает продуцировать его в больших количествах. Еще один пример: трансгенные козы, в результате введения соответствующего гена, могут вырабатывать специфический белок, фактор VIII, который препятствует кровотечению у больных, страдающих гемофилией, или фермент, тромбокиназу, способствующий рассасыванию тромба в кровеносных сосудах, что актуально для профилактики и терапии тромбофлебита у людей. Трансгенные животные вырабатывают эти белки намного быстрее, а сам способ значительно дешевле традиционного.

В конце 90-х годов XX в. учёные США вплотную подошли к получению сельскохозяйственных животных методом клонирования клеток эмбрионов, хотя это направление нуждается еще в дальнейших серьезных исследованиях. А вот в ксенотрансплантации - пересадке органов от одного вида живых организмов другому, - достигнуты несомненные результаты. Наибольшие успехи получены при использовании свиней, имеющих в генотипе перенесенные гены человека, в качестве доноров различных органов. В этом случае наблюдается минимальный риск отторжения органа. В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности. Под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замкнутым циклом и т.п.

Биологизацию же следует понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы. Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотический круговорот. Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений: Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений. Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917 г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980 г. таких видов стало 432. Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека. Точно так же в настоящее время становится понятной и стратегическая бесперспективность применения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом

Биотехнология как наука и сфера производства. Предмет, цели и задачи биотехнологии, связь с фундаментальными дисциплинами.

Биотехнология - это технологические процессы с использованием биотехнологических систем - живых организмов и компонентов живой клетки. Системы могут быть разными - от микробов и бактерий до ферментов и генов. Биотехнология - это производство, основанное на достижениях современной науки: генетической инженерии, физико-химии ферментов, молекулярной диагностики и молекулярной биологии, селекционной генетики, микробиологии, биохимии, химии антибиотиков.

В сфере производства лекарственных средств биотехнология вытесняет традиционные технологии, открывает принципиально новые возможности. Биотехнологическим способом производят генно-инженерные белки (интерфероны, интерлейкины, инсулин, вакцины против гепатита и т.п.), ферменты, диагностические средства (тест-системы на наркотики, лекарственные вещества, гормоны и т.п.), витамины, антибиотики, биодеградируемые пластмассы, биосовместимые материалы.

Иммунная биотехнология, с помощью которой распознают и выделяют из смесей одиночные клетки, может применяться не только непосредственно в медицине для диагностики и лечения, но и в научных исследованиях, в фармакологической, пищевой и других отраслях промышленности, а также использоваться для получения препаратов, синтезируемых клетками защитной системы организма.

В настоящее время достижения биотехнологии перспективны в следующих отраслях:

В промышленности (пищевая, фармацевтическая, химическая, нефтегазовая) - использование биосинтеза и биотрансформации новых веществ на основе сконструированных методами генной инженерии штаммов бактерий и дрожжей с заданными свойствами на основе микробиологического синтеза;

В экологии - повышение эффективности экологизированной защиты растений, разработка экологически безопасных технологий очистки сточных вод, утилизация отходов агропромышленного комплекса, конструирование экосистем;

В энергетике - применение новых источников биоэнергии, полученных на основе микробиологического синтеза и моделированных фотосинтетических процессов, биоконверсии биомассы в биогаз;

В сельском хозяйстве - разработка в области растениеводства трансгенных агрокультур, биологических средств защиты растений, бактериальных удобрений, микробиологических методов, рекультивации почв; в области животноводства - создание эффективных кормовых препаратов из растительной, микробной биомассы и отходов сельского хозяйства, репродукция животных на основе эмбриогенетических методов;

В медицине - разработка медицинских биопрепаратов, мо-ноклональных антител, диагностикумов, вакцин, развитие иммунобиотехнологии в направлении повышения чувствительности и специфичности иммуноанализа заболеваний инфекционной и неинфекционной природы.

По сравнению с химической технологией биотехнология имеет следующие основные преимущества:

Возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

Проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

Микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы. Например, с помощью микроорганизмов в ферментере объемом 300 м 3 за сутки можно выработать 1 т белка (365 т/год). Чтобы такое же количество белка в год выработать с помощью крупного рогатого скота, нужно иметь стадо 30 000 голов. Если же использовать для получения такой скорости производства белка бобовые растения, например горох, то потребуется иметь поле гороха площадью 5400 га;

В качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

Биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

Как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять раннюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакторов с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология - это совокупность технологических методов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекарственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и индустриального производства.

Современная биотехнология - это химия, где изменение и превращение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая.

1. Биообъекты как средство производства лечебных, реабилитационных, профилактических и диагностических средств. Классификация и общая характеристика биообъектов.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицеты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, пектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.



Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов.

Микробами среди растений являются микроскопические водоросли (Аlgае), а среди животных.- микроскопические простейшие (Рrotozoa). Из эукариот к микробам относятся грибы и, при определенных оговорках, лишайники, которые являются природными симбиотическими ассоциациями микроскопических грибов и микроводорослей или грибов и цианобактерий.

Аcaryotа - безъядерные, Рrосаrуоtа - предъядерные и Еuсаrуоtа - ядерные (от греч. а - нет, рrо - до, еu - хорошо, полностью, саrуоn - ядро). К первому относятея организованные частицы - вирусы и вироиды, ко второму - бактерии, к третьему - все другие организмы (грибы, водоросли, растения, животные).

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых также нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Пробиотики - препараты на основе биомассы отдельных видов микроорганизмов используются при дисбактериозах для нормализации микрофлоры желудочнокишечного тракта. Микроорганизмы необходимы также при производстве вакцин. Наконец, микробные клетки методами генной инженерии могут быть превращены в продуценты видоспецифических для человека белковых гормонов, белковых факторов неспецифического иммунитета и т.д.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным иеточником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительных тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.

2. Макробиообъекты животного происхождения. Человек как донор и объект иммунизации. Млекопитающие, птицы, рептилии и др.

В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта как человек, хотя на первый взгляд это кажется парадоксальным.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее ее экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических белков человека.

Важное значение в биотехнологии имеют макрообъекты, к которым относятся различные животные и птицы. В случае производства иммунной плазмы человек выступает, кроме того, в качестве объекта иммунизации.

Для получения различных вакцин в качестве объектов для размножения вирусов используют органы и ткани, в том числе эмбриональные, различных животных и птиц: Необходимо отметить, что термином «донор» в данном случае обозначен биообъект, поставляющий материал для процесса производства лекарственного средства без ущерба для собственной жизнедеятельности, а термином «донатор» - биообъект, у которого забор материала для производства лекарственного средства оказывается несовместимым с продолжением жизнедеятельности.

Из эмбриональных тканей наиболее широко используемыми являются эмбриональные ткани цыпленка. Особенной выгодой отличаются куриные эмбрионы (по доступности) десяти-двенадцатисуточного возраста, используемые преимущественно для репродукции вирусов и последующего изготовления вирусных вакцин. Куриные эмбрионы введены в вирусологическую практику в 1931 г. Г. М. Вудруфом и Е. У. Гудпасчером. Такие эмбрионы рекомендуют также для выявления, идентификации и определения инфицирующей дозы вирусов, для получения антигенных препаратов, применяемых в серологических реакциях.

Инкубированные при 38°С куриные яйца овоскопируют (просвечивают), отбраковывают, "прозрачные" неоплодотворенные экземпляры и сохраняют оплодотворенные, в которых хорошо видны наполненные кровеносные сосуды хорионаллантоисной оболочки и движения эмбрионов.

Заражение эмбрионов можно проводить вручную и автоматизированно. Последний способ применяют в крупномасштабном производстве, например, противогриппозных вакцин. Материал, содержащий вирусы, вводят с помощью шприца (батареи шприцов) в различные части эмбриона (эмбрионов).

Все этапы работы с куриными эмбрионами после овоскопии проводят в асептичных условиях. Материалом для заражения могут быть суспензия растертой мозговой ткани (применительно к вирусу бешенства), печени, селезенки, почек (применительно к хламидиям орнитоза) и т. д. В целях деконтаминации вирусного материала от бактерий или в целях предотвращения его бактериального загрязнения можно использовать соответствующие антибиотики, например, пенициллин с каким-либо ами-ногликозидом порядка 150 МЕ каждого на 1 мл суспензии виру-сосодержащего материала. Для борьбы с грибковым заражением эмбрионов целесообразно воспользоваться некоторыми антибио-тиками-полиенами (нистатин, амфотерицин В) или отдельными производными бензимидазола (например дактарин и др.).

Чаще всего суспензию вирусного материала вводят в аллантоисную полость или, реже, на хорионаллантоисную оболочку в количестве 0,05-0,1 мл, прокалывая продезинфицированную скорлупу (например, иодированным этанолом) на расчетную глубину. После этого отверстие закрывают расплавленным парафином и эмбрионы помещают в термостат, в котором поддерживается оптимальная температура для репродукции вируса, например 36-37,5°С. Продолжительность инкубации зависит от типа и активности вируса. Обычно через 2-4 суток можно наблюдать изменение оболочек с последующей гибелью эмбрионов. Зараженные эмбрионы контролируют ежедневно 1-2 раза (овоскопируют, поворачивают другой стороной). Погибшие эмбрионы затем передают в отделение сбора вирусного материала. Там их дезинфицируют, аллантоисную жидкость с вирусом отсасывают и переносят в стерильные емкости. Инактивацию вирусов при определенной температуре проводят обычно с помощью формалина, фенола или других веществ. Применяя высокоскоростное центрифугирование или афинную хроматографию (см.), удается получать высокоочищенные вирусные частицы.

Собранный вирусный материал, прошедший соответствующий контроль, подвергают лиофильной сушке. Контролю подлежат следующие показатели: стерильность, безвредность и специфическая активность. Применительно к стерильности имеют в виду отсутствие: живого гомологичного вируса в убитой вакцине, бактерий и грибов. Безвредность и специфическую активность оценивают на животных и только после этого вакцину разрешают испытывать на волонтерах или добровольцах; после успешного проведения клинической апробации вакцину разрешают применять в широкой медицинской практике.

На куриных эмбрионах получают, например, живую противогриппозную вакцину. Она предназначается для интраназального введения (лицам старше 16 лет и детям от 3 до 15 лет). Вакцина представляет собой высушенную аллантоисную жидкость, взятую от зараженных вирусом куриных эмбрионов. Тип вируса подбирают согласно эпидемиологической ситуации и прогнозам. Поэтому препараты могут выпускаться в виде моновакцины или дивакцины (напрмер, включающая вирусы А2 и В) в ампулах с 20 и 8 прививочными дозами для соответствующих групп населения. Высушенная масса в ампулах обычно имеет светло-желтый цвет, который сохраняется и после растворения содержимого ампулы в прокипяченой остуженной воде.

Живые противогриппозные вакцины для взрослых и детей готовят и для приема через рот. Такие вакцины представляют собой специальные вакцинные штаммы, репродукция которых происходила в течение 5-15 пассажей (не менее и не более) на культуре почечной ткани куриных эмбрионов. Их выпускают в сухом виде во флаконах. При растворении в воде цвет из светло-желтого переходит в красноватый.

Из других вирусных вакцин, получаемых на куриных эмбрионах, можно назвать противопаротитную, против желтой лихорадки.

Из прочих эмбриональных тканей используют эмбрионы мышей или других млекопитающих животных, а также абортированные плоды человека.

Эмбриональные перевиваемые ткани доступны после обработки трипсином, поскольку в таких тканях еще не формируется большого количества межклеточных веществ (в том числе небелковой природы). Клетки разделяются и после необходимых обработок их культивируют в специальных средах в монослое или в суспендированном состоянии.

Ткани, изолируемые от животных после рождения, относятся к разряду зрелых. Чем их возраст больше, тем с большим трудом они культивируются. Однако после успешного выращивания они затем "выравниваются" и мало чем отличаются от эмбриональных клеток.

Кроме полиомиелита специфическую профилактику живыми вакцинами проводят при кори. Противокоревую живую сухую вакцину изготавливают из вакцинного штамма, репродукция которого осуществлялась на клеточных культурах почек морских свинок или фибробластах японских перепелок.

3. Биообъекты растительного происхождения. Дикорастущие растения и культуры растительных клеток.

Для растений характерны: способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала.

Водоросли - важный источник различных полисахаридов и других биологичоски активных веществ. Размножаются оии вегетативио, бесполым и половым путями. Как биообъекты используются недостаточно, хотя, например, ламинария под названием морской капусты производится промышленностью разлнчных стран. Хоро-шо известны агар-агар и альгинаты, получаемые из водорослей.

Клетки высших растеиий. Высшие растения (порядка 300 000 видов) - зто дифференцированные многоклеточные, преимущественно наземные организмы. Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриоиальной стадии развития в течение всей жизни растения, называготся инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей - конечные клетки.

В зависимости от топологии в растении меристемы подразделяют на верхушечные, или апикальные (отлат. арех - верхушка), боковые, или латеральные (от лат. lateralis - боковой) и промежуточные, или интеркалярные (от лат. Intercalaris - промежугочный, вставной.

Тотипотентность - это свойство соматических клеток растений полностью реализовать свой потенциал развития вплоть до образования целого растения.

Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток - каллус (отлат. callus - мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого расгения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах. Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопласгов. Последующие клеточно-иижснерныс эксперименты с ними заманчивы по возможным ценным результатам.

4. Биообъекты - микроорганизмы. Основные группы получаемых биологически активных веществ.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицсты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, само-регулируемого и, следовательно, целенаправленного биохимиче-ского производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов,.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

5. Биообъекты - макромолекулы с ферментативной активностью. Использование в биотехнологических процессах.

В последнее время группа ферментных препаратов получила новое направление применения - это инженерная энзимология, которая является разделом биотехнологии, где биообъектом выступает фермент.

Органотерапия, т.е. лечение органами и препаратами из органов, тканей и выделений животных, долгое время покоилась на глубоком эмпиризме и противоречивых представлениях, занимая видное место в медицине всех времен и народов. Лишь во второй половине XIX столетия в результате успехов, достигнутых биологической и органической химией, и развития экспериментальной физиологии органотерапия становится на научную основу. Это связано с именем французского физиолога Броун-Секара. Особое внимание привлекали работы Броун-Секара связанные с введением в организм человека вытяжек из семенников быка, оказавших положительное влияние на работоспособность и самочувствие.

Первыми официнальными препаратами (ГФ VII) были адреналин, инсулин, питуитрин, пепсин и панкреатин. В дальнейшем в результате обширных исследований, проведенных советскими эндокринологами и фармакологами, оказалось возможным последовательно расширить круг официнальных и неофицинальных органопрепаратов.

Тем не менее, некоторые аминокислоты получают химическим синтезом, например глицин, а также D-, L-метионин, D-изомер которого малотоксичен, поэтому медицинский препарат на основе метионина содержит D- и L-формы, хотя за рубежом в медицине используется препарат, содержащий только L-форму метионина. Там рацемическую смесь метионина разделяют биоконверсией D-формы в L-форму под влиянием специальных ферментов живых клеток микроорганизмов.

Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании их в прикладных целях по сравнению с нативными предшественниками. Во-первых, гетерогенный катализатор легко отделить от реакционной среды, что дает возможность: а) остановить в нужный момент реакцию; б) использовать катализатор повторно; в) получать продукт, не загрязненный ферментом. Последнее особенно важно в ряде пищевых и фармацевтических производств.

Во-вторых, использование гетерогенных катализаторов позволяет проводить ферментативный процесс непрерывно, например в проточных колоннах, и регулировать скорость катализируемой реакции, а также выход продукта путем изменения скорости потока.

В-третьих, иммобилизация или модификация фермента способствует целенаправленному изменению свойств катализатора, в том числе его специфичности (особенно в отношении к макромолекулярным субстратам), зависимости каталитической активности от рН, ионного состава и других параметров среды и, что очень важно, его стабильности по отношению к различного рода денатурирующим воздействиям. Отметим, что крупный вклад в разработку общих принципов стабилизации ферментов был сделан советскими исследователями.

В-четвертых, иммобилизация ферментов дает возможность регулировать их каталитическую активность путем изменения свойств носителя под действием некоторых физических факторов, таких, как свет или звук. На этой основе создаются механо- и звукочувствительные датчики, усилители слабых сигналов и бессеребряные фотографические процессы.

В результате внедрения нового класса биоорганических катализаторов - иммобилизованных ферментов, перед прикладной энзимологией открылись новые, ранее недоступные пути развития. Одно лишь перечисление областей, в которых находят применение иммобилизованные ферменты, могло бы занять немало места.

6. Направления совершенствования биообъектов методами селекции и мутагенеза. Мутагены. Классификация. Характеристика. Механизм их действия.

Что мутации - это первоисточник изменчивости организмов, создающий основу для эволюции. Однако во второй половине XIX в. для микроорганизмов был открыт еще один источник изменчивости - перенос чужеродных генов - своего рода «генная инженерия природы».

Долгое время понятие мутации относили только к хромосомам у прокариот и хромосомам (ядру) у эукариот. В настоящее время кроме хромосомных мутаций появилось также понятие мутаций цитоплазматических (плазмидных - у прокариот, митохондриальных и плазмидных - у эукариот).

Мутации могут быть обусловлены как перестройкой репликона (изменением в нем числа и порядка расположения генов), так и изменениями внутри индивидуального гена.

Применительно к любым биообъектам, но особенно часто в случае микроорганизмов, выявляются так называемые спонтанные мутации, обнаруживаемые в популяции клеток без специального воздействия на нее.

По выраженности почти любого признака клетки в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака. Отклонения «+» и «–» от среднего значения встречаются в популяции тем реже, чем больше величина отклонения в любую сторону (рис. I). Первоначальный, самый простой подход к совершенствованию биообъекта заключался в отборе отклонений «+» (предполагая, что именно эти отклонения соответствуют интересам производства). В новом клоне (генетически однородное потомство одной клетки; на твердой среде - колония), полученном из клетки с отклонением «+» вновь проводился отбор по тому же принципу. Однако такая процедура при ее неоднократном повторении довольно быстро теряет эффективность, т. е. отклонения «+» становятся в новых клонах все меньше по величине.

Мутагенез осуществляется при обработке биообъекта физическими или химическими мутагенами. В первом случае, как правило, это ультрафиолетовые, гамма, рентгеновские лучи; во втором - нитрозометилмочевина, нитрозогуанидин, акридиновые красители, некоторые природные вещества (например, из ДНК–тропных антибиотиков вследствие их токсичности не применяемых в клинике инфекционных заболеваний). Механизм активности как физических, так и химических мутагенов связан с их непосредственным действием на ДНК (прежде всего на азотистые основания ДНК, что выражается в сшивках, димеризации, алкилировании последних, интеркаляции между ними).

Подразумевается, естественно, что повреждения не приводят к летальному исходу. Таким образом, после обработки биообъекта мутагенами (физическими или химическими) их воздействие на ДНК приводит к частому наследственному изменению уже на уровне фенотипа (тех или иных его свойств). Последующей задачей является отбор и оценка именно нужных биотехнологу мутаций. Для их выявления обработанную культуру высеивают на твердые питательные среды разных составов, предварительно разведя ее с таким расчетом, чтобы на твердой среде не было сплошнбго роста, а формировались отдельные колонии, образуемые при размножении именно отдельных клеток. Затем каждую колонию пересеивают и полученную культуру (клон) проверяют по тем или иным признакам в сравнении с исходной. Эта селекционная часть работы в целом весьма трудоемка, хотя приемы, позволяющие повысить ее эффективность, постоянно совершенствуются.

Так, изменяя состав твердых питательных сред, на которых вырастают колонии, можно сразу получить первоначальные сведения о свойствах клеток этой колонии в сравнении с клетками исходной культуры. Для высеивания клонов с разными особенностями метаболизма используют так называемый «метод отпечатков», разработанный Дж. Ледербергом и Э.Ледерберг. Популяцию микробных клеток разводят так, чтобы на чашке Петри с питательной средой вырастало около ста колоний и они были бы четко разделены. На металлический цилиндр диаметром, близким к диаметру чашки Петри, надевают бархат; затем все стерилизуют, создавая, таким образом, «стерильное бархатное дно» цилиндра. Далее прикладывают это дно к поверхности среды в чашке с выросшими на ней колониями. При этом колонии как бы «отпечатываются» на бархате. Затем этот бархат прикладывают к поверхности сред разного состава. Таким образом можно установить: какая из колоний в исходной чашке (на бархате расположение колоний отражает их расположение на поверхности твердой среды в исходной чашке) соответствует, например, мутанту, нуждающемуся в конкретном витамине, или конкретной аминокислоте; или какая колония соетоит из мутантных клеток, способных к образованию фермента, окисляюшего определенный субстрат; или какая колония состоит из клеток, получивших резистентность к тому или иному антибиотику и т.п.

В первую очередь биотехнолога интересуют мутантные культуры, обладающие повышенной способностью к образованию целевого продукта. Продуцент целевого вещества, наиболее перспективный в практическом отношении, может многократно обрабатываться разными мутагенами. Новые мутантные штаммы, получаемые в научных лабораториях разных стран мира, служат предметом обмена при творческом сотрудничестве, лицензионной продажи и т.п.

Потенциальные возможности мутагенеза (с последующей селекцией) обусловлены зависимостью биосинтеза целевого продукта от многих метаболических процессов в организме продуцента. Например, повышенную активность организма, образующего целевой продукт, можно ожидать, если мутация привела к дупликации (удвоению) или амплификации (умножению) структурных генов, включенных в систему синтеза целевого продукта. Далее активность можно повысить, если за счет разных типов мутаций будут подавлены функции репрессорных генов, регулирующих синтез целевого продукта. Весьма эффективный путь увеличения образования целевого продукта - нарушение системы ретроингибирования. Повысить активность продуцента можно также, изменив (за счет мутаций) систему транспорта предшественников целевого продукта в клетку. Наконец, иногда целевой продукт при резком увеличении его образования отрицательно влияет на жизнеспособность собственного продуцента (так называемый суицидный эффект). Повышение резистентности продуцента к образуемому им же веществу часто необходимо для получения, например, суперпродуцентов антибиотиков.

Помимо дупликации и амплификации структурных генов мутации могут носить характер делеции - «стирания», т.е. «выпадения» части генетического материала. Мутации могут быть обусловлены транспозицией (вставкой участка хромосомы в новое место) или инверсией (изменением порядка расположения генов в хромосоме). При этом геном мутантного организма претерпевает изменения, ведущие в одних случаях к потере мутантом определенного признака, а в других - к возникновению у него нового признака. Гены на новых местах оказываются под контролем иных регуляторных систем. Кроме того, в клетках мутанта могут появиться несвойственные исходному организму гибридные белки за счет того, что под контролем одного промотора оказываются полинуклеотидные цепи двух (или более) структурных генов, ранее отдаленных один от другого.

Немалое значение для биотехнологического производства могут иметь и так называемые «точечные» мутации. В этом случае изменения происходят впределах только одного гена. Например, выпадение или вставка одного или нескольких оснований, К «точечным» мутациям относятся трансверсия (когда происходит замена пурина на пиримидин) и транзиция (замена одного пурина на другой пурин или одного пиримидина на другой пиримидин). Замены в одной паре нуклеотидов (минимальные замены) при передаче генетического кода на стадии трансляции ведут к появлению в кодируемом белке вместо одной аминокислоты другой. Это может резко изменить конформацию данного белка и, соответственно, его функциональную активность, особенно в случае замены аминокислотного остатка в активном или аллостерическом центре.

Одним из самых блестящих примеров эффективности мутагенеза с последующей селекцией по признаку увеличения образования целевого продукта является история создания современных суперпродуцентов пенициллина. Работа с исходными биообъектами - штаммами (штамм - клоновая культура, однородность которой по определенным признакам поддерживается отбором) гриба Penicillium chrysogenum, выделенными из природных источников, велась с 1940х гг. в течение нескольких десгятилетий во многих лабораториях. Вначале некоторый успех был достигнут при отборе мутантов, появившихся в результате спонтанных мутаций. Затем перешли к индуцированию мутаций физическими и химическими мутагенами. В результате ряда удачных мутаций и ступенчатого отбора все более продуктивных мутантов активность штаммов Penicillium chrysogenum, используемых в промышленности стран, где производят пенициллин, сейчас в 100 тыс. раз выше, чем у обнаруженного А.Флемингом исходного штамма, с которого и началась история открытия пенициллина.

Производственные штаммы (применительно к биотехнологическому производству) с такой высокой продуктивностью (это относится не только к пенициллину, но и к другим целевым продуктам) крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме клеток штамма сами по себе для жизнеспособности этих клеток положительного значения не имеют. Поэтому мутантные штаммы требуют постоянного контроля при хранении: популяцию клеток высеивают на твердую среду и полученные из отдельных колоний культуры проверяют на продуктивность. При этом ревертанты - культуры с пониженной активностью отбрасывают. Реверсия объясняется обратными спонтанными мутациями, ведущими к возвращению участка генома (конкретного фрагмента ДНК) в его первоначальное состояние. Специальные ферментные системы репарации участвуют в реверсии к норме - в эволюционном механизме поддержания постоянства вида.

Совершенствование биообъектов применительно к производству не исчерпывается только повышением их продуктивности. Хотя это направление, несомненно, является главным, но оно не может быть единственным: успешная работа биотехнологического производства определяется многими факторами. С экономической точки зрения весьма важно получение мутантов, способных использовать более дешевые и менее дефицитные питательные среды. Если для работы в исследовательской лаборатории дорогие среды не создают особых финансовых проблем, то при крупнотоннажном производстве понижение их стоимости (хотя и без увеличения уровня активности продуцента) крайне важно.

Другой пример: в случае некоторых биообъектов культуральная жидкость после окончания ферментации имеет неблагоприятные в технологическом отношении реологические свойства. Поэтому в цехе выделения и очистки целевого продукта, работая с культуральной жидкостью повышенной вязкости, сталкиваются с трудностями при использовании сепараторов, фильтрпрессов и т.д. Мутации, соответствующим образом меняющие метаболизм биообъекта, в значительной мере снимают эти трудности.

Большое значение в отношении гарантии надежности производства приобретает получение фагоустойчивых биообъектов. Соблюдение асептических условий при проведении ферментации прежде всего касается предотвращения попадания в посевной материал (а также в ферментационный аппарат) клеток и спор посторонних бактерий и фибов (в более редких случаях водорослей и простейших). Предотвратить проникновение в ферментер фагов вместе с технологическим воздухом, стерилизуемым путем фильтрации, крайне трудно. Не случайно вирусы в первые годы после их открытия именовали «фильтрующимися». Поэтому основной путь борьбы с бактериофагами, актинофагами и фагами, поражающими грибы, - получение устойчивых к ним мутантных форм биообъектов.

Не касаясь специальных случаев работы с биообъектами–патогенами, следует подчеркнуть, что иногда задача совершенствования биообъектов исходит из требований промышленной гигиены. Например, выделенный из природного источника продуцент одного из важных беталактамных антибиотиков в значительном количестве образовывал летучие вешества с неприятным запахом гниющих овощей.

Мутации, ведущие к удалению генов, кодирующих ферменты, участвующие в синтезе этих летучих веществ, приобрели в данном случае практическое значение для производства.

Из всего изложенного следует, что современный биообъект, используемый в биотехнологической промышленности, - это суперпродуцент, отличающийся от исходного природного штамма не по одному, а, как правило, по нескольким показателям. Хранение таких штаммов–суперпродуцентов представляет серьезную самостоятельную проблему. При всех способах хранения их необходимо периодическй пересеивать и проверять как на продуктивность, так и на другие важные для производства свойства.

В случае применения высших растений и животных в качестве биообъектов для получения лекарственных средств возможности использования мутагенеза и селекции для их совершенствования ограничены. Однако в принципе мутагенез и селекция здесь не исключены. Особенно это относится к растениям, образующим вторичные метаболиты, которые используются как лекарственные вещества.

7. Направления создания новых биообъектов методами генетической инженерии. Основные уровни генетической инженерии. Характеристика.

С помощью методов генетической инженерии можно конструировать по определенному плану новые формы микроорганизмов, способных синтезировать самые различные продукты, в том числе продукты животного и растительного происхождения, При этом следует учитывать высокие скорости роста и продуктивность микроорганизмов, их способность к утилизации разнообразных видов сырья. Широкие перспективы перед биотехнологией открывает возможность микробиологического синтеза белков человека: таким способом получены соматостатин, интерфероны, инсулин, гормон роста.

Основные проблемы на пути конструирования новых микроорганизмов-продуцентов сводятся к следующему.

1. Продукты генов растительного, животного и человеческого происхождения попадают в чуждую для них внутриклеточную среду, где они подвергаются разрушению микробными протеаза-ми. Особенно быстро, за несколько минут, гидролизуются короткие пептиды типа соматостатина. Стратегия защиты генноинженерных белков в микробной клетке сводится к: а) использованию ингибиторов протеаз; так, выход человеческого интерферона возрастал в 4 раза при введении в плазмиду, несущую интерфе-роновый ген, фрагмента ДНК фага Т4 с геном pin, отвечающим за синтез ингибитора протеаз; б) получению интересующего пептида в составе гибридной белковой молекулы, для этого ген пептида сшивают с природным геном организма-реципиента; чаще всего используют ген белка А Staphylococcus aureus\ в) амплификации (увеличению числа копий) генов; многократное повторение гена человеческого проинсулина в составе плазмиды привело к синтезу в клетке Е. coli мультимера этого белка, который оказался значительно стабильнее к действию внутриклеточных протеаз, чем мономерный проинсулин. Проблема стабилизации чужеродных белков в клетках исследована еще недостаточно (В. И. Таняшин, 1985).

2. В большинстве случаев продукт трансплантированного гена не высвобождается в культуральную среду и накапливается внутри клетки, что существенно затрудняет его выделение. Так, принятый метод получения инсулина с помощью Е. coli предполагает разрушение клеток и последующую очистку инсулина. В связи с этим большое значение придается трансплантации генов, отвечающих за экскрецию белков из клеток. Имеются сведения о новом способе генноинженерного синтеза инсулина, который выделяется в культуральную среду (М. Sun, 1983).

Оправдана также переориентация биотехнологов с излюбленного объекта генетической инженерии Е. coli на другие биообъекты. Е. coli экскретирует сравнительно мало белков. Кроме того, клеточная стенка этой бактерии содержит токсическое вещество эндокотин, которое необходимо тщательно отделять от продуктов, используемых в фармакологических целях. Как объекты генетической инженерии перспективны поэтому грамположительные бактерии (представители родов Bacillus, Staphylococcus, Streptomyces). В частности Bas. subtilis выделяет более 50 различных белков в культуральную среду (С. Vard, 1984). В их число входят ферменты, инсектициды, а также антибиотики. Перспективны также эукариотические организмы. Они обладают рядом преимуществ, в частности, дрожжевой интерферон синтезируется в гликолизированной форме, как и нативный человеческий белок (в отличие от интерферона, синтезируемого в клетках Е. coti).

3. Большинство наследственных признаков кодируется несколькими генами, и генноинженерная разработка должна включать стадии последовательной трансплантации каждого из генов. Примером реализованного многогенного проекта является создание штамма Pseudomonas sp., способного утилизировать сырую нефть. С помощью плазмид штамм последовательно обогащался генами ферментов, расщепляющих октан, камфору, ксилол, нафталин (В. Г. Дебабов, 1982). В некоторых случаях возможна не последовательная, а одновременная трансплантация целых блоков генов с помощью одной плазмиды. В составе одной плазмиды может быть перенесен в клетку-реципиент nif-оперон Klebsiella pneumonia, отвечающий за фиксацию азота. Способность организма к фиксации азота определяется наличием по меньшей мере 17 различных генов, отвечающих как за структурные компоненты нитрогеназного комплекса, так и за регуляцию их синтеза.

Генетическая инженерия растений осуществляется на орга-низменном, тканевом и клеточном уровнях. Показанная, пусть для немногих видов (для томатов, табака, люцерны), возможность регенерации целого организма из одиночной клетки резко повысила интерес к генетической инженерии растений. Однако здесь, помимо чисто технических, предстоит решить проблемы, связанные с нарушениями структуры генома (изменения плоид-ности, хромосомные перестройки) культивируемых клеток растений. Примером реализованного генноинженерного проекта является синтез фазеолина, запасного белка фасоли, в регенерированных растениях табака. Трансплантация гена, отвечающего за синтез фазеолина, была проведена с использованием Ti-плазмиды в качестве вектора. С помощью Ti-плазмиды трансплантирован также ген устойчивости к антибиотику неомицину в растения табака, а с помощью CMV-вируса - ген устойчивости к ингибитору дигидрофолатредуктазы метотрексату в растения репы.

Генетическая инженерия растений включает манипуляции не только с ядерным геномом клеток, но также с геномом хлоро-пластов и митохондрий. Именно в хлоропластный геном наиболее целесообразно вводить ген азотфиксации для устранения потребности растений в азотных удобрениях. В митохондриях кукурузы найдены две плазмиды (S-1 и S-2), обусловливающие цитоплаз-матическую мужскую стерильность. Если селекционерам необходимо «запретить» самоопыление кукурузы и допустить лишь перекрестное опыление, они могут не заботиться об удалении тычинок вручную, если берут для оплодотворения растения с цитоплазматической мужской стерильностью. Такие растения могут быть выведены путем длительной селекции, однако генетическая инженерия предлагает более быстрый и целенаправленный метод - прямое введение плазмид в митохондрии клеток кукурузы. К разработкам в области генетической инженерии растений следует отнести также генетическую модификацию симбионтов растений - клубеньковых бактерий рода Rhizobium. В клетки этих бактерий с помощью плазмид предполагается вводить hup (hydrogen uptake)-ген, в природе существующий лишь у некоторых штаммов R. japonicum и R. leguminosarum. Нир-ген обусловливает поглощение и утилизацию газообразного водорода, высвобождаемого при функционировании азотфиксирующего ферментного комплекса клубеньковых бактерий. Рециклизаиия водорода позволяет избежать потерь восстановительных эквивалентов при симбиотической азотфиксации в клубеньках бобовых растений и значительно повысить продуктивность этих растений.

Отдаленной задачей пока остается применение методов генетической инженерии для улучшения пород сельскохозяйственных животных. Речь идет об увеличении эффективности использования кормов, повышении плодовитости, выхода молока и яиц, устойчивости животных к заболеваниям, ускорении их роста, улучшении качества мяса. Однако до сих пор не выяснена генетика всех этих признаков сельскохозяйственных животных, что препятствует попыткам генетических манипуляций в этой области.

8. Клеточная инженерия и ее использование в создании микроорганизмов и клеток растений. Метод слияния протопластов.

Клеточная инженерия - одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта - изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности - уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференцировка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения зна чительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.

В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов - цитокининов - оказалось, что при совместном их действии с другим классом фитогормонов - ауксинами - появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.

В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккингом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод клонального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани«няньки». Этот мстод был разработан в России в 1969 г. в Институте физиологии растений им. К. А. Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.

Впервые термин «изолированные протопласты» был предложен Д. Ханстейном в 1880 г. Протопласт в целой клетке можно наблю-дать во время плазмолиза. Изолированный протопласт - это содержимое растительной клетки, окруженное плазмалеммой. Целлюлозная стенка у данного образования отсутствует. Изолированные протопласты - одни из наиболее ценных объектов в биотехнологии. Они позволяют исследовать различные свойства мембран, а также транспорт веществ через плазмалемму. Главное их преиму-щество состоит в том, что в изолированные протопласты достаточно легко вводить генетическую информацию из органелл и клеток других растений, прокариотических организмов и из клеток животных. Е. Коккинг установил, что изолированный протопласт благодаря механизму пиноцитоза способен поглощать из окружающей среды не только низкомолекулярные вещества, но и крупные моле-кулы, частицы (вирусы) и даже изолированные органеллы.

Большое значение в создании новых форм растений для изуче-ния взаимодействия ядерного генома и геномов органелл имеет способность изолированных протопластов сливаться, образуя гибридные клетки. Таким способом можно добиться получения гибридов от растений с разной степенью таксономической удален-ности, но обладающих ценными хозяйственными качествами.

Впервые протопласты были выделены Дж. Клернером в 1892 г. при изучении плазмолиза в клетках листа телореза {Stratiotes aloides) во время механического повреждения ткани. Поэтому этот метод назван механическим. Он позволяет выделить лишь небольшое количество протопластов (вьщеление возможно не из всех видов тканей); сам метод длительный и трудоемкий. Современный метод выделения протопластов заключается в удалении клеточной стенки с помощью поэтапного использования ферментов для ее разрушения: целлюлазы, гемицеллюлазы, пектиназы. Этот метод получил название ферментативного.

Первое успешное выделение протопластов из клеток высших растений данным методом сделано Е. Коккингом в 1960 г. По сравнению с механическим ферментативный метод имеет ряд преимуществ. Он позволяет сравнительно легко и быстро выделять большое количество протопластов, причем они не испытывают сильного осмотического шока. После действия ферментов смесь протопластов пропускают через фильтр и центрифугируют для удаления неразрушенных клеток и их осколков.

Выделить протопласты можно из клеток растительных тканей, культуры каллусов и суспензионной культуры. Оптимальные условия для изоляции протопластов для разных объектов индивидуальны, что требует кропотливой предварительной работы по подбору концентраций ферментов, их соотношения, времени обработки. Очень важным фактором, позволяющим выделять целые жизнеспособные протопласты, является подбор осмотического стабилизатора. В качестве стабилизаторов обычно используют различные сахара, иногда ионные осмотики (растворы солей СаС1 2 , Na 2 HP0 4 , КСІ). Концентрация осмотиков должна быть немного гипертонична, чтобы протопласты находились в состоянии слабого плазмолиза. В этом случае тормозятся метаболизм и регенерация клеточной стенки.

Изолированные протопласты можно культивировать. Обычно для этого используют те же среды, на которых растут изолированные клетки и ткани. Сразу же после удаления ферментов у протопластов в культуре начинается образование клеточной стенки. Протопласт, регенерировавший стенку, ведет себя как изолированная клетка, способен делиться и формировать клон клеток. Регенерация целых растений из изолированных протопластов сопряжена с рядом трудностей. Получить регенерацию через эмбриогенез удалось пока только у растений моркови. Стимуляцией последовательного образования корней и побегов (органогенез) добились регенерации растений табака, петунии и некоторых других растений. Следует отметить, что протопласты, изолированные из генетически стабильной клеточной культуры, чаще регенерируют растения и с большим успехом используются при исследованиях генетической модификации протопластов.

9. Методы клеточной инженерии применительно к животным клеткам. Гибридомная технология и ее использование в биотехнологических процессах.

В 1975 г. Г. Келер и К. Мильштейн сумели впервые выделить клоны клеток, способные секретировать только один тип молекул антител и в то же время расти в культуре. Эти клоны клеток были получены слиянием антителообразующих и опухолевых клеток - клеток–химер, названных гибридомами, так как, с одной стороны, они наследовали способность к практически неограниченному росту в культуре, а с другой стороны, способность к продукции антител определенной специфичности (моноклональных антител).

Весьма существенно для биотехнолога то, что отобранные клоны могут длительно храниться в замороженном состоянии, поэтому в случае необходимости можно взять определенную дозу такого клона и ввести животному, у которого будет развиваться опухоль, продуцирующая моноклональные антитела заданной специфичности. Вскоре в сыворотке животного будут обнаружены антитела в очень высокой концентрации от 10 до 30 мг/мл. Клетки такого клона можно также выращивать in vitro, а секретируемые ими антитела получатъ из культуральной жидкости.

Создание гибридом, которые можно хранить в замороженном состоянии (криоконсервирование), позволило организовать целые гибридомные банки, что в свою очередь открыло большие перспективы по применению моноклональных антител. Сфера их применения помимо количественного определения разных веществ включает самую разнообразную диагностику, например идентификацию определенного гормона, вирусных или бактериальных антигенов, антигенов группы крови и тканевых антигенов.

Этапы получения гибридных клеток. Слиянию клеток предшествует установление тесного контакта между плазматическими мембранами. Этому препятствует наличие поверхностного заряда на природных мембранах, обусловленного отрицательно заряженными группами белков и липидов. Деполяризация мембран переменным электрическим или магнитным полем, нейтрализация отрицательного заряда мембран с помощью катионов способствует слиянию клеток. На практике широко используются ионами Са2+, хлорпромазином. Эффективным «сливающим» (фузогенным) агентом служит полиэтиленгликоль.

По отношению к животным клеткам применяют также вирус Сендай, действие которого как сливающего агента, по-видимому, связано с частичным гидролизом белков цитоплазматической мембраны. Участок субъединицы FI вируса обладает протеолитической активностью (С. Nicolau et al., 1984). Растительные, грибные и бактериальные клетки перед слиянием освобождают от клеточной стенки, при этом получаются протопласты. Клеточную стенку подвергают ферментативному гидролизу, применяя лизоцим (для бактериальных клеток), зимолиазу улитки (для клеток грибов), комплекс циллюлаз, гемицеллюлаз и пектиназ, продуцируемый грибами (для клеток растений). Набухание и последующее разрушение протопластов предотвращается созданием повышенной осмолярности среды. Подбор гидролитических ферментов и концентрации солей в среде с целью обеспечения максимального выхода протопластов представляет собой сложную задачу, решаемую в каждом случае отдельно.

Для скрининга полученных гибридных клеток используют различные подходы: 1) учет фенотипических признаков; 2) создание селективных условий, в которых выживают лишь гибриды, объединившие геномы родительских клеток.

Возможности метода слияния клеток. Метод слияния соматических клеток открывает перед биотехнологией значительные перспективы.

1. Возможность скрещивания филогенетически отдаленных форм живого. Путем слияния клеток растений получены плодовитые, фенотипически нормальные межвидовые гибриды табака, картофеля, капусты с турнепсом (эквивалентные природному рапсу), петунии. Имеются стерильные межродовые гибриды картофеля и томата, стерильные межтрибные гибриды арабидопсиса и турнепса, табака и картофеля, табака и беладонны, которые образуют морфологически ненормальные стебли и растения. Получены клеточные гибриды между представителями различных семейств, существующие, однако, лишь как неорганизованно растущие клетки (табака и гороха, табака и сои, табака и конских бобов). Получены межвидовые (Saccharomyces uvarum и S. diastalicus) и межродовые (Kluyveromyces lactis и S. cerevisiae) гибриды дрожжей. Имеются данные о слиянии клеток различных видов грибов и бактерий.

Несколько курьезными представляются опыты по слиянию клеток организмов, относящихся к различным царствам, например клеток лягушек Xenopus taevis и протопластов моркови. Гибридная растительно-животная клетка постепенно одевается клеточной стенкой и растет на средах, на которых культивируют растительные клетки. Ядро животной клетки, по-видимому, достаточно быстро теряет свою активность (Е. С. Cocking, 1984).

2. Получение асимметричных гибридов, несущих полный набор генов одного из родителей и частичный набор другого родителя. Такие гибриды часто возникают при слиянии клеток организмов, филогенетически удаленных друг от друга. В этом случае вследствие неправильных делений клеток, обусловленных некоординированным поведением двух разнородных наборов хромосом, в ряду поколений теряются частично или полностью хромосомы одного из родителей.

Асимметричные гибриды бывают устойчивее, плодовитее и жизнеспособнее, чем симметричные, несущие полные наборы генов родительских клеток. В целях асимметричной гибридизации возможна избирательная обработка клеток одного из родителей для разрушения части его хромосом. Возможен прицельный перенос из клетки в клетку нужной хромосомы. Представляет также интерес получение клеток, у которых гибридной является только цитоплазма. Цитоплазматические гибриды образуются, когда после слияния клеток ядра сохраняют свою автономию и при последующем делении гибридной клетки оказываются в разных дочерних клетках. Скрининг таких клеток проводится по генам-маркерам ядерного и цитоплазматических (митохондриального и хлоропластного) геномов.

Клетки со слившейся цитоплазмой (но не ядрами) содержат ядерный геном одного из родителей и в то же время совмещают Цитоплазматические гены слившихся клеток. Есть указания на рекомбинацию ДНК митохондрий и хлоропластов в гибридных клетках.

Получение гибридов путем слияния трех и более родительских клеток. Из таких гибридных клеток могут быть выращены растения (грибы)-регенеранты.

Гибридизация клеток, несущих различные программы развития, - слияние клеток различных тканей или органов, слияние нормальных клеток с клетками, программа развития которых изменена в результате злокачественного перерождения. В этом случае получаются так называемые гибридомные клетки, или гибридомы, наследующие от нормальной родительской клетки способность к синтезу того или иного полезного соединения, а от злокачественной - способность к быстрому и неограниченному росту.

Гибридомная технология. Получение гибридом на сегодняшний день - наиболее перспективное направление клеточной инженерии. Основная цель - «обессмертить» клетку, продуцирующую ценные вещества путем слияния с раковой клеткой и клонирования полученной гибридомной клеточной линии. Гибридомы получены на основе клеток - представителей различных царств живого. Слияние клеток растений, растущих в культуре обычно медленно, с клетками растительных опухолей позволяет получить клоны быстрорастущих клеток - продуцентов нужных соединений. Многообразны применения гибридомной технологии к животным клеткам, где с ее помощью планируется получение неограниченно размножающихся продуцентов гормонов и белковых факторов крови, Наибольшее практическое значение имеют гибридомы - продукты слияния клеток злокачественных опухолей иммунной системы (миелом) с нормальными клетками той же системы-лимфоцитами.

При попадании в организм животного или человека чужеродного агента - бактерий, вирусов, «чужих» клеток или просто сложных органических соединений - лимфоциты мобилизуются для обезвреживания введенного агента. Имеется несколько популяций лимфоцитов, функции которых различаются. Существуют так называемые Т-лимфоциты, среди которых выделяются Т-киллеры («убийцы»), непосредственно атакующие чужеродный агент с целью его инактивации, и В-лимфоциты, основная функция которых состоит в продукции иммунных белков (иммуноглобулинов), обезвреживающих чужеродный агент путем связывания с его поверхностными участками (антигенными детерминантами), иными словами, В-лимфоциты вырабатывают иммунные белки, представляющие собой антитела к чужеродному агенту - антигену.

Слияние Т-лимфоцита-киллера с опухолевой клеткой дает клон неограниченно размножающихся клеток, выслеживающих определенный антиген - тот, к которому был специфичен взятый Т-лимфоцит. Подобные Т-киллерные гибридомные клоны пытаются использовать для борьбы с раковыми клетками непосредственно в организме больного (Б. Фукс и др., 1981; 1983),

При слиянии В-лимфоцита с миеломной клеткой получаются В-гибридомные клоны, широко применяемые как продуценты антител, нацеленных на тот же антиген, что и антитела, синтезируемые породившим клон В-лимфоцитом, т. е. моноклопальных антител. Моноклональные антитела однородны по своим свойствам, они обладают одинаковым сродством к антигену и связываются с. одной единственной антигенной детерминантой. В этом состоит важное преимущество моноклональных антител - продуктов В-гибридом, по сравнению с антителами, получаемыми без применения клеточной инженерии, путем иммунизации лабораторного животного избранным антигеном с последующим выделением антител из сыворотки его крови или в результате непосредственного взаимодействия антигена с популяцией лимфоцитов в культуре ткани. Подобные традиционные методы дают смесь антител, различных по специфичности и сродству к антигену, что объясняется участием в выработке антител многих различных клонов В-лимфоцитов и наличием у антигена нескольких детерминант, каждая из которых соответствует особому типу антител. Таким образом, моноклональные антитела избирательно связываются лишь с одним антигеном, инактивируя его, что имеет большое практическое значение для распознавания и лечения заболеваний, вызываемых чужеродными агентами - бактериями, грибками, вирусами, токсинами, аллергенами и трансформированными собственными клетками (раковые опухоли), Моноклональные антитела успешно применяют в аналитических целях для изучения клеточных органелл, их структуры или отдельных биомолекул.

До недавнего времени для гибридизации использовали исключительно миеломные клетки и В-лимфоциты мыши и крысы. Продуцируемые ими моноклональные антитела имеют ограниченное терапевтическое применение, так как они сами представляют чужеродный белок для человеческого организма. Освоение технологии получения гибридом на основе иммунных клеток человека связано со значительными трудностями: человеческие гиб-ридомы растут медленно, сравнительно мало стабильны. Однако уже получены гибридомы человека - продуценты моноклональ-ных антител. Оказалось, что и человеческие моноклональные антитела в некоторых случаях вызывают иммунные реакции, и их клиническая эффективность зависит от правильного подбора класса антител, гибридомных линий, подходящих для данного больного. К достоинствам человеческих моноклональных антител относится способность распознавать тонкие различия в структуре антигена, которые не распознаются моноклональными антителами мыши или крысы. Предприняты попытки получения химерных гибридом, сочетающих мышиные миеломные клетки и человеческие В-лимфоциты; такие гибридомы находят пока лишь ограниченное применение tK- Haron, 1984).

Наряду с несомненными преимуществами моноклональные антитела имеют и недостатки, порождающие проблемы при их практическом использовании. Они не стабильны при хранении в высушенном состоянии, в то же время в смеси обычных (поли-клональных) антител всегда присутствует группа антител, устойчивая при избранных условиях хранения. Таким образом, неоднородность обычных антител дает им дополнительный резерв стабильности при изменении внешних условий, что соответствует одному из основных принципов повышения надежности систем. Моноклональные антитела нередко имеют слишком низкое сродство к антигену и чрезмерно узкую специфичность, что препятствует их применению против изменчивых антигенов, характерных для инфекционных агентов и опухолевых клеток. Необходимо отметить также очень высокую стоимость моноклональных антител на международном рынке.

Общая схема получения гибридом на основе миеломных клеток и иммунных лимфоцитов включает следующие этапы.

1. Получение мутантных опухолевых клеток, погибающих при последующей селекции гибридомных клеток. Стандартным подходом является выведение линий миеломных клеток, не способных к синтезу ферментов запасных путей биосинтеза пуринов и пиримидинов из гипоксантина и тимидина соответственно (рис 6). Отбор таких мутантов опухолевых клеток проводят с применением токсических аналогов гипоксантина и тимидина. В среде, содержащей эти аналоги, выживают только мутантные клетки, которые лишены ферментов гипоксантингуанинфосфори-бозилтрансферазы и тимидинкиназы, необходимых для запасных путей биосинтеза нуклеотидов.

Дисциплина, изучающая способы использования организмов для решения технологических задач, - вот что такое биотехнология. А проще говоря, это наука, которая изучает живые организмы в поисках новых способов для обеспечения человеческих потребностей. Например, генная инженерия или клонирование - это новые дисциплины, которые используют с одинаковой активностью как организмы, так и новейшие компьютерные технологии.

Биотехнология: кратко

Очень часто понятие «биотехнология» путают с генной инженерией, возникшей в XX—XXI веках, а ведь биотехнология относится к более широкой специфике работы. Биотехнология специализируется на модификации растений и животных путем гибридизации и искусственного отбора для потребностей человека.

Эта дисциплина дала человечеству возможность улучшить качество пищевых продуктов, увеличить продолжительность жизни и продуктивность живых организмов - вот что такое биотехнология.

До 70-х годов прошлого века этот термин использовали исключительно в пищевой промышленности и сельском хозяйстве. И только в 1970 году ученые начали использовать термин «биотехнология» в лабораторных исследованиях, таких как выращивание живых организмов в пробирках или при создании рекомбинантных ДНК. Эта дисциплина базируется на таких науках, как генетика, биология, биохимия, эмбриология, а также на робототехнике, химических и информационных технологиях.

На основе новых научно-технологических подходов были разработаны методы биотехнологии, которые заключаются в двух основных позициях:

  • Крупномасштабном и глубинном культивировании биологических объектов в периодическом постоянном режиме.
  • Выращивании клеток и тканей в особых условиях.

Новые методы биотехнологии позволяют манипулировать генами, создавать новые организмы или менять свойства уже существующих живых клеток. Это дает возможность более обширно использовать потенциал организмов и облегчает хозяйственную деятельность человека.

История биотехнологии

Как бы это странно ни звучало, но свои истоки биотехнология берет с далекого прошлого, когда люди только начинали заниматься виноделием, хлебопечением и другими способами приготовления пищи. К примеру, биотехнологический процесс брожения, в котором активно участвовали микроорганизмы, был известен еще в древнем Вавилоне, где широко применялся.

Как науку, биотехнологию стали рассматривать только в начале XX века. Ее основоположником стал французский ученый, микробиолог Луи Пастер, а сам термин впервые ввел в обиход венгерский инженер Карл Эреки (1917 год). XX век был ознаменован бурным развитием молекулярной биологии и генетики, где активно применялись достижения химии и физики. Одним из ключевых этапов исследования стала разработка методов культивирования живых клеток. Изначально для промышленных целей начинали выращивать только грибы и бактерии, но спустя несколько десятилетий ученые могут создавать любые клетки, полностью управляя их развитием.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В это время предпринимаются первые попытки по налаживанию производства антибиотиков. Разрабатываются первые пищевые концентраты, контролируется уровень ферментов в продуктах животного и растительного происхождения. В 1940 году ученым удалось получить первый антибиотик - пенициллин. Это стало толчком к развитию промышленного производства лекарств, возникает целая отрасль фармацевтической промышленности, что представляет собой одну из ячеек современной биотехнологии.

Сегодня биотехнологии используются в пищевой промышленности, медицине, сельском хозяйстве и многих других сферах человеческой жизнедеятельности. Соответственно появилось множество новых научных направлений с приставкой «био».

Биоинженерия

На вопрос о том, что такое биотехнология, основная часть населения без сомнений ответит, что это не что иное, как генная инженерия. Отчасти это правда, но инженерия лишь часть обширной дисциплины биотехнологий.

Биоинженерия - это дисциплина, основная деятельность которой направлена на укрепление человеческого здоровья посредством объединения знаний из области инженерии, медицины, биологии и применения их на практике. Полное название этой дисциплины - биомедицинская инженерия. Главная ее специализация - решение медицинских проблем. Применение биотехнологий в медицине позволяет моделировать, разрабатывать и изучать новые субстанции, разрабатывать фармацевтические препараты и даже избавлять человека от врожденных заболеваний, что передаются по ДНК. Специалисты в этой области могут создавать приборы и оборудование для проведения новых процедур. Благодаря применению биотехнологий в медицине были разработаны искусственные суставы, кардиостимуляторы, протезы кожи, аппараты искусственного кровообращения. При помощи новых компьютерных технологий специалисты в области биоинженерии могут создавать белки с новыми свойствами при помощи компьютерного моделирования.

Биомедицина и фармакология

Развитие биотехнологий дало возможность по-новому посмотреть на медицину. Нарабатывая теоретическую базу о человеческом организме, специалисты в этой области имеют возможность использовать нанотехнологии для изменения биологических систем. Развитие биомедицины дало толчок для появления наномедицины, основная деятельность которой заключается в слежении, исправлении и конструировании живых систем на молекулярном уровне. К примеру, адресная доставка лекарств. Это не курьерская доставка от аптеки до дома, а передача препарата непосредственно к больной клетке организма.

Также развивается и биофармакология. Она изучает эффекты, которые оказывают вещества биологического или биотехнологического происхождения на организм. Исследования этой области знаний сосредоточены на изучении биофармацевтических препаратов и разработке способов для их создания. В биофармакологии лечебные средства получают из живых биологических систем или тканей организма.

Биоинформатика и бионика

Но биотехнологии - это не только учение о молекулах тканей и клеток живых организмов, это еще и применение компьютерных технологий. Таким образом, имеет место биоинформатика. Она включает в себя совокупность таких подходов, как:

  • Геномная биоинформатика. То есть методы компьютерного анализа, которые применяются в сравнительной геномике.
  • Структурная биоинформатика. Разработка компьютерных программ, которые предсказывают пространственную структуру белков.
  • Вычисление. Создание вычислительных методологий, которые могут управлять биологическими системами.

В этой дисциплине вместе с биологическими методами используются методы математики, статистических вычислений и информатики. Как в биологии используются приемы информатики и математики, так и в точных науках сегодня могут использовать учение об организации живых организмов. Как в бионике. Это прикладная наука, где в технических устройствах применяются принципы и структуры живой природы. Можно сказать, что это своеобразный симбиоз биологии и техники. Дисциплинарные подходы в бионике рассматривают с новой точки зрения как биологию, так и технику. Бионика рассматривала сходные и отличительные черты этих дисциплин. Эта дисциплина имеет три подвида - биологический, теоретический и технический. Биологическая бионика изучает процессы, которые происходят в биологических системах. Теоретическая бионика строит математические модели биосистем. А техническая бионика применяет наработки теоретической бионики для решения различных задач.

Как видно, достижения биотехнологий широко распространены в современной медицине и здравоохранении, но это лишь вершина айсберга. Как уже было сказано, биотехнология начала развиваться с того момента, как человек стал готовить себе пищу, а после широко применялась в сельском хозяйстве для выращивания новых селекционных культур и вывода новых пород домашних животных.

Клеточная инженерия

Одним из самых важных методов в биотехнологии является генная и клеточная инженерия, которые сосредоточены на создании новых клеток. С помощью этих инструментов человечество получило возможность создавать жизнеспособные клетки из совершенно разных элементов, принадлежащих различным видам. Таким образом, создается новый не существующий в природе набор генов. Генная инженерия дает возможность человеку получить желаемые качества от модифицированных клеток растений или животных.

Особенно ценятся достижения генной инженерии в сельском хозяйстве. Это позволяет выращивать растения (или животных) с улучшенными качествами, так называемые селекционные виды. Селекционная деятельность основана на отборе животных или растений с ярко выраженными благоприятными признаками. После эти организмы скрещивают и получают гибрид с требуемой комбинацией полезных признаков. Конечно, на словах все звучит просто, но получить искомый гибрид достаточно сложно. В реальности можно получить организм только с одним или несколькими полезными генами. То есть к исходному материалу добавляется лишь несколько дополнительных качеств, но даже это позволило сделать огромный шаг в развитии сельского хозяйства.

Селекция и биотехнологии дали возможность фермерам повысить урожайность, сделать плоды более крупными, вкусными, а главное, стойкими к морозам. Не обходит селекция стороной и животноводческую сферу деятельности. С каждым годом появляются новые породы домашних животных, которые могут давать больше поголовья и продуктов питания.

Достижения

В создании селекционных растений ученые выделяют три волны:

  1. Конец 80-х годов. Тогда ученые впервые начали выводить растения, устойчивые к вирусам. Для этого они брали один ген у видов, которые могли противостоять заболеваниям, «пересаживали» его в ДНК-структуру других растений и заставляли «работать».
  2. Начало 2000-х годов. В этот период начали создаваться растения с новыми потребительскими свойствами. Например, с повышенным содержанием масел, витаминов и т. д.
  3. Наши дни. В ближайшие 10 лет ученые планируют выпустить на рынок растения-вакцины, растения-лекарства и растения-биорекаткоры, которые будут производить компоненты для пластика, красителей и т. д.

Даже в животноводстве перспективы биотехнологии поражают. Уже давно создаются животные, которые имеют трансгенный ген, то есть обладают каким-либо функциональным гормоном, например гормон роста. Но это были лишь начальные эксперименты. В результате исследований были выведены трансгенные козы, которые могут вырабатывать белок, который останавливает кровотечение у больных, страдающих плохой свертываемостью крови.

В конце 90-х годов прошлого века американские ученые вплотную занялись клонированием клеток эмбрионов животных. Это позволило бы выращивать скот в пробирках, но сейчас этот метод все еще нуждается в доработке. Зато в ксенотрансплантации (пересадка органов одних видов животным другим) ученые в области прикладной биотехнологии достигли существенного прогресса. К примеру, в качестве доноров можно использовать свиней с геномом человека, тогда наблюдается минимальный риск отторжения.

Пищевая биотехнология

Как уже было упомянуто, первоначально методы биотехнологических исследований стали применять в пищевом производстве. Йогурты, закваски, пиво, вино, хлебобулочные изделия - это продукты, полученные при помощи пищевой биотехнологии. Этот сегмент исследования включает в себя процессы, направленные на изменение, улучшение или создание конкретных характеристик живых организмов, в частности бактерий. Специалисты этой области знаний занимаются разработкой новых методик по изготовлению различных продуктов питания. Ищут и улучшают механизмы и методы их приготовления.

Еда, которую человек ест каждый день, должна быть насыщена витаминами, минералами и аминокислотами. Однако по состоянию на сегодняшний день, согласно данным ООН, существует проблема обеспечения человека продуктами питания. Почти половина населения не имеет должного количества пищи, 500 миллионов голодают, четверть населения планеты питаются недостаточно качественными продуктами.

Сегодня на планете проживает 7,5 миллиарда человек, и если не принимать необходимых действий по повышению качества и количества продуктов питания, если этим не заниматься, то люди в развивающихся странах станут страдать от губительных последствий. И если можно заменить липиды, минералы, витамины, антиоксиданты продуктами пищевой биотехнологии, то заменить белок практически невозможно. Более 14 миллионов тонн белка каждый год не хватает, чтобы обеспечить потребности человечества. Но здесь на помощь приходят биотехнологии. Современное белковое производство строится на том, что искусственно формируются белковые волокна. Их пропитывают необходимыми веществами, придают форму, соответствующий цвет и запах. Этот подход дает возможность заменить практически любой белок. А вкус и вид ничем не отличаются от естественного продукта.

Клонирование

Важной областью знаний в современных биотехнологиях является клонирование. Вот уже на протяжении нескольких десятилетий ученые пытаются создать идентичных потомков, не прибегая к половому размножению. В процессе клонирования должен получиться организм, который похож на родительский не только внешне, но и генной информацией.

В природе процесс клонирования распространен среди некоторых живых организмов. Если у человека рождаются однояйцевые близнецы, то их можно считать естественными клонами.

Впервые клонирование провели в 1997 году, когда искусственно создали овцу Долли. И уже в конце ХХ века ученые стали говорить о возможности клонирования человека. Кроме того, исследовалось такое понятие, как частичное клонирование. То есть можно воссоздавать не целый организм, а его отдельные части или ткани. Если усовершенствовать этот метод, то можно получить «идеального донора». Кроме того, клонирование поможет сохранить редкие виды животных или восстановить исчезнувшие популяции.

Моральный аспект

Несмотря на то что основы биотехнологии могут оказать решающее влияние на развитие всего человечества, о таком научном подходе плохо отзывается общественность. Подавляющая часть современных религиозных деятелей (да и некоторые ученые) пытаются предостеречь биотехнологов от чрезмерного увлечения своими исследованиями. Особенно остро это касается вопросов генной инженерии, клонирования и искусственного размножения.

С одной стороны, биотехнологии представляются яркой звездой, мечтой и надеждой, которые станут реальными в новом мире. В будущем эта наука подарит человечеству множество новых возможностей. Станет возможным преодоление смертельных болезней, устранятся физические проблемы, и человек, рано или поздно, сможет достигнуть земного бессмертия. Хотя, с другой стороны, на генофонде может сказаться постоянное употребление генномодифицированных продуктов или появление людей, которых создали искусственно. Появится проблема изменения социальных структур, и, вполне вероятно, придется столкнуться с трагедией медицинского фашизма.

Вот что такое биотехнология. Наука, которая может подарить блестящие перспективы человечеству путем создания, изменения или улучшения клеток, живых организмов и систем. Она сможет подарить человеку новое тело, и мечта о вечной жизни станет реальностью. Но за это придется заплатить немалую цену.

Выбор редакции
Что делать, если диеты не помогают, а голодать не хватает силы воли и возможностей? Остается надежное и проверенное средство — заговор...

Детальное описание из нескольких источников: «молитва за поступление ребенка в вуз» - в нашем некоммерческом еженедельном религиозном...

При своевременно назначенном и эффективном лечении анализ крови СРБ покажет уменьшение концентрации белка уже через несколько дней....

У многих есть мечта: иметь доступ к неиссякаемому фонтану достатка и прибыли. Если получится, то на постоянной основе. А что вы можете...
Во всех клиниках «Медок» можно сдать анализы практически всех популярных типов. В том числе: общий анализ мочи; анализ на яйца остриц и...
Современный человек, живущий в большом городе, наполненном суматохой, шумом и соблазнами, не очень склонен верить в духовные чудеса. Но...
Всем невозможно нравиться. Даже если человек очень добрый и милый, это не дает ему стопроцентной защиты от зависти . А зависть - чувство...
Религиозное чтение: самая сильная молитва матери о замужестве дочери в помощь нашим читателям.В прошлом столетии ученые провели...
К причинам появления язвенной болезни относят длительные стрессы, отрицательные эмоции, хронический холецистит, желчнокаменную ,...