How is the probability of an event calculated? Probability of an event. Basic concepts of probability theory. Events


So, let's talk about a topic that interests a lot of people. In this article I will answer the question of how to calculate the probability of an event. I will give formulas for such a calculation and several examples to make it clearer how this is done.

What is probability

Let's start with the fact that the probability that this or that event will occur is a certain amount of confidence in the eventual occurrence of some result. For this calculation, a total probability formula has been developed that allows you to determine whether the event you are interested in will occur or not, through the so-called conditional probabilities. This formula looks like this: P = n/m, the letters can change, but this does not affect the essence itself.

Examples of probability

Using a simple example, let's analyze this formula and apply it. Let's say you have a certain event (P), let it be a throw of a dice, that is, an equilateral die. And we need to calculate what is the probability of getting 2 points on it. To do this, you need the number of positive events (n), in our case - the loss of 2 points, for the total number of events (m). A roll of 2 points can only happen in one case, if there are 2 points on the dice, since otherwise the sum will be greater, it follows that n = 1. Next, we count the number of rolls of any other numbers on the dice, per 1 dice - these are 1, 2, 3, 4, 5 and 6, therefore, there are 6 favorable cases, that is, m = 6. Now, using the formula, we make a simple calculation P = 1/6 and we find that the roll of 2 points on the dice is 1/6, that is, the probability of the event is very low.

Let's also look at an example using colored balls that are in a box: 50 white, 40 black and 30 green. You need to determine what is the probability of drawing a green ball. And so, since there are 30 balls of this color, that is, there can only be 30 positive events (n = 30), the number of all events is 120, m = 120 (based on the total number of all balls), using the formula we calculate that the probability of drawing a green ball is will be equal to P = 30/120 = 0.25, that is, 25% of 100. In the same way, you can calculate the probability of drawing a ball of a different color (black it will be 33%, white 42%).

When a coin is tossed, we can say that it will land heads up, or probability this is 1/2. Of course, this does not mean that if a coin is tossed 10 times, it will necessarily land on heads 5 times. If the coin is "fair" and if it is tossed many times, then heads will land very close half the time. Thus, there are two types of probabilities: experimental And theoretical .

Experimental and theoretical probability

If we flip a coin a large number of times - say 1000 - and count how many times it lands on heads, we can determine the probability that it lands on heads. If heads are thrown 503 times, we can calculate the probability of it landing:
503/1000, or 0.503.

This experimental definition of probability. This definition of probability comes from observation and study of data and is quite common and very useful. Here, for example, are some probabilities that were determined experimentally:

1. The probability that a woman will develop breast cancer is 1/11.

2. If you kiss someone who has a cold, then the probability that you will also get a cold is 0.07.

3. A person who has just been released from prison has an 80% chance of returning to prison.

If we consider tossing a coin and taking into account that it is just as likely that it will come up heads or tails, we can calculate the probability of getting heads: 1/2. This is a theoretical definition of probability. Here are some other probabilities that have been determined theoretically using mathematics:

1. If there are 30 people in a room, the probability that two of them have the same birthday (excluding year) is 0.706.

2. During a trip, you meet someone, and during the conversation you discover that you have a mutual friend. Typical reaction: “This can’t be!” In fact, this phrase is not suitable, because the probability of such an event is quite high - just over 22%.

Thus, experimental probabilities are determined through observation and data collection. Theoretical probabilities are determined through mathematical reasoning. Examples of experimental and theoretical probabilities, such as those discussed above, and especially those that we do not expect, lead us to the importance of studying probability. You may ask, "What is true probability?" In fact, there is no such thing. Probabilities within certain limits can be determined experimentally. They may or may not coincide with the probabilities that we obtain theoretically. There are situations in which it is much easier to determine one type of probability than another. For example, it would be sufficient to find the probability of catching a cold using theoretical probability.

Calculation of experimental probabilities

Let us first consider the experimental definition of probability. The basic principle we use to calculate such probabilities is as follows.

Principle P (experimental)

If in an experiment in which n observations are made, a situation or event E occurs m times in n observations, then the experimental probability of the event is said to be P (E) = m/n.

Example 1 Sociological survey. An experimental study was conducted to determine the number of left-handed people, right-handed people and people whose both hands are equally developed. The results are shown in the graph.

a) Determine the probability that the person is right-handed.

b) Determine the probability that the person is left-handed.

c) Determine the probability that a person is equally fluent in both hands.

d) Most Professional Bowling Association tournaments are limited to 120 players. Based on the data from this experiment, how many players could be left-handed?

Solution

a)The number of people who are right-handed is 82, the number of left-handers is 17, and the number of those who are equally fluent in both hands is 1. The total number of observations is 100. Thus, the probability that a person is right-handed is P
P = 82/100, or 0.82, or 82%.

b) The probability that a person is left-handed is P, where
P = 17/100, or 0.17, or 17%.

c) The probability that a person is equally fluent in both hands is P, where
P = 1/100, or 0.01, or 1%.

d) 120 bowlers, and from (b) we can expect that 17% are left-handed. From here
17% of 120 = 0.17.120 = 20.4,
that is, we can expect about 20 players to be left-handed.

Example 2 Quality control . It is very important for a manufacturer to keep the quality of its products at a high level. In fact, companies hire quality control inspectors to ensure this process. The goal is to produce the minimum possible number of defective products. But since the company produces thousands of products every day, it cannot afford to test every product to determine whether it is defective or not. To find out what percentage of products are defective, the company tests far fewer products.
The USDA requires that 80% of the seeds sold by growers must germinate. To determine the quality of the seeds that an agricultural company produces, 500 seeds from those that were produced are planted. After this, it was calculated that 417 seeds sprouted.

a) What is the probability that the seed will germinate?

b) Do the seeds meet government standards?

Solution a) We know that out of 500 seeds that were planted, 417 sprouted. Probability of seed germination P, and
P = 417/500 = 0.834, or 83.4%.

b) Since the percentage of seeds germinated has exceeded 80% as required, the seeds meet government standards.

Example 3 Television ratings. According to statistics, there are 105,500,000 households with televisions in the United States. Every week, information about viewing programs is collected and processed. In one week, 7,815,000 households tuned in to the hit comedy series "Everybody Loves Raymond" on CBS and 8,302,000 households tuned in to the hit series "Law & Order" on NBC (Source: Nielsen Media Research). What is the probability that one household's TV is tuned to "Everybody Loves Raymond" during a given week? to "Law & Order"?

Solution The probability that the TV in one household is tuned to "Everybody Loves Raymond" is P, and
P = 7,815,000/105,500,000 ≈ 0.074 ≈ 7.4%.
The chance that the household's TV was tuned to Law & Order is P, and
P = 8,302,000/105,500,000 ≈ 0.079 ≈ 7.9%.
These percentages are called ratings.

Theoretical probability

Suppose we are conducting an experiment, such as throwing a coin or darts, drawing a card from a deck, or testing products for quality on an assembly line. Each possible result of such an experiment is called Exodus . The set of all possible outcomes is called outcome space . Event it is a set of outcomes, that is, a subset of the space of outcomes.

Example 4 Throwing darts. Suppose that in a dart throwing experiment, a dart hits a target. Find each of the following:

b) Outcome space

Solution
a) The outcomes are: hitting black (B), hitting red (R) and hitting white (B).

b) The space of outcomes is (hitting black, hitting red, hitting white), which can be written simply as (H, K, B).

Example 5 Throwing dice. A die is a cube with six sides, each with one to six dots on it.


Suppose we are throwing a die. Find
a) Outcomes
b) Outcome space

Solution
a) Outcomes: 1, 2, 3, 4, 5, 6.
b) Outcome space (1, 2, 3, 4, 5, 6).

We denote the probability that an event E occurs as P(E). For example, “the coin will land on heads” can be denoted by H. Then P(H) represents the probability that the coin will land on heads. When all outcomes of an experiment have the same probability of occurring, they are said to be equally likely. To see the differences between events that are equally likely and events that are not, consider the target shown below.

For target A, the events of hitting black, red and white are equally probable, since the black, red and white sectors are the same. However, for target B, the zones with these colors are not the same, that is, hitting them is not equally probable.

Principle P (Theoretical)

If an event E can happen in m ways out of n possible equally probable outcomes from the outcome space S, then theoretical probability events, P(E) is
P(E) = m/n.

Example 6 What is the probability of rolling a die to get a 3?

Solution There are 6 equally probable outcomes on a dice and there is only one possibility of rolling the number 3. Then the probability P will be P(3) = 1/6.

Example 7 What is the probability of rolling an even number on a die?

Solution The event is the throwing of an even number. This can happen in 3 ways (if you roll a 2, 4 or 6). The number of equally probable outcomes is 6. Then the probability P(even) = 3/6, or 1/2.

We will use a number of examples involving a standard 52 card deck. This deck consists of the cards shown in the figure below.

Example 8 What is the probability of drawing an Ace from a well-shuffled deck of cards?

Solution There are 52 outcomes (the number of cards in the deck), they are equally likely (if the deck is well shuffled), and there are 4 ways to draw an Ace, so according to the P principle, the probability
P(draw an ace) = 4/52, or 1/13.

Example 9 Suppose we choose, without looking, one ball from a bag with 3 red balls and 4 green balls. What is the probability of choosing a red ball?

Solution There are 7 equally probable outcomes of drawing any ball, and since the number of ways to draw a red ball is 3, we get
P(red ball selection) = 3/7.

The following statements are results from Principle P.

Properties of Probability

a) If event E cannot happen, then P(E) = 0.
b) If event E is certain to happen then P(E) = 1.
c) The probability that event E will occur is a number from 0 to 1: 0 ≤ P(E) ≤ 1.

For example, in a coin toss, the event that the coin lands on its edge has zero probability. The probability that a coin is either heads or tails has a probability of 1.

Example 10 Let's assume that 2 cards are drawn from a 52-card deck. What is the probability that both of them are peaks?

Solution The number n of ways to draw 2 cards from a well-shuffled deck of 52 cards is 52 C 2 . Since 13 of the 52 cards are spades, the number of ways m to draw 2 spades is 13 C 2 . Then,
P(pulling 2 peaks) = m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Example 11 Suppose 3 people are randomly selected from a group of 6 men and 4 women. What is the probability that 1 man and 2 women will be selected?

Solution The number of ways to select three people from a group of 10 people is 10 C 3. One man can be chosen in 6 C 1 ways, and 2 women can be chosen in 4 C 2 ways. According to the fundamental principle of counting, the number of ways to choose 1 man and 2 women is 6 C 1. 4 C 2 . Then, the probability that 1 man and 2 women will be selected is
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Example 12 Throwing dice. What is the probability of rolling a total of 8 on two dice?

Solution Each dice has 6 possible outcomes. The outcomes are doubled, meaning there are 6.6 or 36 possible ways in which the numbers on the two dice can appear. (It’s better if the cubes are different, say one is red and the other is blue - this will help visualize the result.)

The pairs of numbers that add up to 8 are shown in the figure below. There are 5 possible ways to obtain a sum equal to 8, hence the probability is 5/36.


How to convert the probability of an event into a coefficient? How to find a value (valuable or inflated) odds on the outcome of an event?

To increase your chances of winning, a player must understand how a bookmaker works.

Bookmaker odds represent the probability of an event with a certain percentage of markup (margin), which varies between 1.5-10% in different offices. If margins didn't exist, all bookmakers would go out of business within hours.

The player must understand what the odds are and bet only on prices that are profitable for themselves. Therefore, he needs to be able to convert odds into probabilities and vice versa.

Formula for converting a coefficient into a percentage of the probability of an event:

V=1/odf*100%

Conversion of probability into odds is calculated using the formula:

K=100%/probability

Example

The bookmaker's odds for the match between Real Madrid and Liverpool are:

2.25 (Win1) – 3.7 (draw) – 3.09 (Win2)

Converting probability coefficients

V(P1) = 1/2.25*100%= 44.4%

V(draw) = 1/3.7*100%= 27%

V(P2) = 1/3.09*100%= 32.4%

We add up the probabilities of this match and get the total probability

V = 44.4%+27%+32.4%= 103.8%

Many will wonder why the probability is more than one hundred percent. The answer is simply simple, everything over 100% is the bookmaker’s margin. In our case it is 3.8%.

Odds for equally probable events should ideally be K(P1) = K(P2) = 2.0 (50%), however, due to the bookmaker’s margin, they will be underestimated. For example, if the bookmaker’s markup is 7%, then the odds will be 1.86, if 2%, then the odds will be 1.96.

The key to success for a successful player is to always bet at the best odds. Bookmakers employ traders who can also make mistakes in their calculations. Skilled players make a good living from such miscalculations.

For example, the bookmaker estimates the victory of Juventus over Roma with a probability of 60% (1.66), and after carefully analyzing the match, you calculated the probability of 67% (1.49). If your calculations are correct, then the bookmaker gives an inflated (valuable) odds for this outcome of this event. The player should definitely take advantage of this opportunity by betting on Juventus to win. Such odds are called value odds and in long-term play they will certainly bring profit to the player.

If your probability was less than 60%, this would mean that the bookmaker underestimated the odds on this outcome. Placing bets on obviously low odds is strictly prohibited!

To find value bets, a player must be able to correctly analyze the probability of an outcome, although there are many reputable services that provide such services for a fee.


Initially, being just a collection of information and empirical observations about the game of dice, the theory of probability became a thorough science. The first to give it a mathematical framework were Fermat and Pascal.

From thinking about the eternal to the theory of probability

The two individuals to whom probability theory owes many of its fundamental formulas, Blaise Pascal and Thomas Bayes, are known as deeply religious people, the latter being a Presbyterian minister. Apparently, the desire of these two scientists to prove the fallacy of the opinion about a certain Fortune giving good luck to her favorites gave impetus to research in this area. After all, in fact, any gambling game with its winnings and losses is just a symphony of mathematical principles.

Thanks to the passion of the Chevalier de Mere, who was equally a gambler and a man not indifferent to science, Pascal was forced to find a way to calculate probability. De Mere was interested in the following question: “How many times do you need to throw two dice in pairs so that the probability of getting 12 points exceeds 50%?” The second question, which was of great interest to the gentleman: “How to divide the bet between the participants in the unfinished game?” Of course, Pascal successfully answered both questions of de Mere, who became the unwitting initiator of the development of probability theory. It is interesting that the person of de Mere remained known in this area, and not in literature.

Previously, no mathematician had ever attempted to calculate the probabilities of events, since it was believed that this was only a guessing solution. Blaise Pascal gave the first definition of the probability of an event and showed that it is a specific figure that can be justified mathematically. Probability theory has become the basis for statistics and is widely used in modern science.

What is randomness

If we consider a test that can be repeated an infinite number of times, then we can define a random event. This is one of the likely outcomes of the experiment.

Experience is the implementation of specific actions under constant conditions.

To be able to work with the results of the experiment, events are usually designated by the letters A, B, C, D, E...

Probability of a random event

In order to begin the mathematical part of probability, it is necessary to define all its components.

The probability of an event is a numerical measure of the possibility of some event (A or B) occurring as a result of an experience. The probability is denoted as P(A) or P(B).

In probability theory they distinguish:

  • reliable the event is guaranteed to occur as a result of the experience P(Ω) = 1;
  • impossible the event can never happen P(Ø) = 0;
  • random an event lies between reliable and impossible, that is, the probability of its occurrence is possible, but not guaranteed (the probability of a random event is always within the range 0≤Р(А)≤ 1).

Relationships between events

Both one and the sum of events A+B are considered, when the event is counted when at least one of the components, A or B, or both, A and B, is fulfilled.

In relation to each other, events can be:

  • Equally possible.
  • Compatible.
  • Incompatible.
  • Opposite (mutually exclusive).
  • Dependent.

If two events can happen with equal probability, then they equally possible.

If the occurrence of event A does not reduce to zero the probability of the occurrence of event B, then they compatible.

If events A and B never occur simultaneously in the same experience, then they are called incompatible. Tossing a coin is a good example: the appearance of heads is automatically the non-appearance of heads.

The probability for the sum of such incompatible events consists of the sum of the probabilities of each of the events:

P(A+B)=P(A)+P(B)

If the occurrence of one event makes the occurrence of another impossible, then they are called opposite. Then one of them is designated as A, and the other - Ā (read as “not A”). The occurrence of event A means that Ā did not occur. These two events form a complete group with a sum of probabilities equal to 1.

Dependent events have mutual influence, decreasing or increasing the probability of each other.

Relationships between events. Examples

Using examples it is much easier to understand the principles of probability theory and combinations of events.

The experiment that will be carried out consists of taking balls out of a box, and the result of each experiment is an elementary outcome.

An event is one of the possible outcomes of an experiment - a red ball, a blue ball, a ball with number six, etc.

Test No. 1. There are 6 balls involved, three of which are blue with odd numbers on them, and the other three are red with even numbers.

Test No. 2. There are 6 blue balls with numbers from one to six.

Based on this example, we can name combinations:

  • Reliable event. In Spanish No. 2 the event “get the blue ball” is reliable, since the probability of its occurrence is equal to 1, since all the balls are blue and there can be no miss. Whereas the event “get the ball with the number 1” is random.
  • Impossible event. In Spanish No. 1 with blue and red balls, the event “getting the purple ball” is impossible, since the probability of its occurrence is 0.
  • Equally possible events. In Spanish No. 1, the events “get the ball with the number 2” and “get the ball with the number 3” are equally possible, and the events “get the ball with an even number” and “get the ball with the number 2” have different probabilities.
  • Compatible Events. Getting a six twice in a row while throwing a die is a compatible event.
  • Incompatible events. In the same Spanish No. 1, the events “get a red ball” and “get a ball with an odd number” cannot be combined in the same experience.
  • Opposite events. The most striking example of this is coin tossing, where drawing heads is equivalent to not drawing tails, and the sum of their probabilities is always 1 (full group).
  • Dependent Events. So, in Spanish No. 1, you can set the goal of drawing the red ball twice in a row. Whether or not it is retrieved the first time affects the likelihood of being retrieved the second time.

It can be seen that the first event significantly affects the probability of the second (40% and 60%).

Event probability formula

The transition from fortune-telling to precise data occurs through the translation of the topic into a mathematical plane. That is, judgments about a random event such as “high probability” or “minimal probability” can be translated into specific numerical data. It is already permissible to evaluate, compare and enter such material into more complex calculations.

From a calculation point of view, determining the probability of an event is the ratio of the number of elementary positive outcomes to the number of all possible outcomes of experience regarding a specific event. Probability is denoted by P(A), where P stands for the word “probabilite”, which is translated from French as “probability”.

So, the formula for the probability of an event is:

Where m is the number of favorable outcomes for event A, n is the sum of all outcomes possible for this experience. In this case, the probability of an event always lies between 0 and 1:

0 ≤ P(A)≤ 1.

Calculation of the probability of an event. Example

Let's take Spanish. No. 1 with balls, which was described earlier: 3 blue balls with the numbers 1/3/5 and 3 red balls with the numbers 2/4/6.

Based on this test, several different problems can be considered:

  • A - red ball falling out. There are 3 red balls, and there are 6 options in total. This is the simplest example in which the probability of an event is P(A)=3/6=0.5.
  • B - rolling an even number. There are 3 even numbers (2,4,6), and the total number of possible numerical options is 6. The probability of this event is P(B)=3/6=0.5.
  • C - the occurrence of a number greater than 2. There are 4 such options (3,4,5,6) out of a total number of possible outcomes of 6. The probability of event C is equal to P(C)=4/6=0.67.

As can be seen from the calculations, event C has a higher probability, since the number of probable positive outcomes is higher than in A and B.

Incompatible events

Such events cannot appear simultaneously in the same experience. As in Spanish No. 1 it is impossible to get a blue and a red ball at the same time. That is, you can get either a blue or a red ball. In the same way, an even and an odd number cannot appear in a dice at the same time.

The probability of two events is considered as the probability of their sum or product. The sum of such events A+B is considered to be an event that consists of the occurrence of event A or B, and the product of them AB is the occurrence of both. For example, the appearance of two sixes at once on the faces of two dice in one throw.

The sum of several events is an event that presupposes the occurrence of at least one of them. The production of several events is the joint occurrence of them all.

In probability theory, as a rule, the use of the conjunction “and” denotes a sum, and the conjunction “or” - multiplication. Formulas with examples will help you understand the logic of addition and multiplication in probability theory.

Probability of the sum of incompatible events

If the probability of incompatible events is considered, then the probability of the sum of events is equal to the addition of their probabilities:

P(A+B)=P(A)+P(B)

For example: let's calculate the probability that in Spanish. No. 1 with blue and red balls, a number between 1 and 4 will appear. We will calculate not in one action, but by the sum of the probabilities of the elementary components. So, in such an experiment there are only 6 balls or 6 of all possible outcomes. The numbers that satisfy the condition are 2 and 3. The probability of getting the number 2 is 1/6, the probability of getting the number 3 is also 1/6. The probability of getting a number between 1 and 4 is:

The probability of the sum of incompatible events of a complete group is 1.

So, if in an experiment with a cube we add up the probabilities of all numbers appearing, the result will be one.

This is also true for opposite events, for example in the experiment with a coin, where one side is the event A, and the other is the opposite event Ā, as is known,

P(A) + P(Ā) = 1

Probability of incompatible events occurring

Probability multiplication is used when considering the occurrence of two or more incompatible events in one observation. The probability that events A and B will appear in it simultaneously is equal to the product of their probabilities, or:

P(A*B)=P(A)*P(B)

For example, the probability that in Spanish No. 1, as a result of two attempts, a blue ball will appear twice, equal to

That is, the probability of an event occurring when, as a result of two attempts to extract balls, only blue balls are extracted is 25%. It is very easy to do practical experiments on this problem and see if this is actually the case.

Joint events

Events are considered joint when the occurrence of one of them can coincide with the occurrence of another. Despite the fact that they are joint, the probability of independent events is considered. For example, throwing two dice can give a result when the number 6 appears on both of them. Although the events coincided and appeared at the same time, they are independent of each other - only one six could fall out, the second die has no influence on it.

The probability of joint events is considered as the probability of their sum.

Probability of the sum of joint events. Example

The probability of the sum of events A and B, which are joint in relation to each other, is equal to the sum of the probabilities of the event minus the probability of their occurrence (that is, their joint occurrence):

R joint (A+B)=P(A)+P(B)- P(AB)

Let's assume that the probability of hitting the target with one shot is 0.4. Then event A is hitting the target in the first attempt, B - in the second. These events are joint, since it is possible that you can hit the target with both the first and second shots. But events are not dependent. What is the probability of the event of hitting the target with two shots (at least with one)? According to the formula:

0,4+0,4-0,4*0,4=0,64

The answer to the question is: “The probability of hitting the target with two shots is 64%.”

This formula for the probability of an event can also be applied to incompatible events, where the probability of the joint occurrence of an event P(AB) = 0. This means that the probability of the sum of incompatible events can be considered a special case of the proposed formula.

Geometry of probability for clarity

Interestingly, the probability of the sum of joint events can be represented as two areas A and B, which intersect with each other. As can be seen from the picture, the area of ​​their union is equal to the total area minus the area of ​​their intersection. This geometric explanation makes the seemingly illogical formula more understandable. Note that geometric solutions are not uncommon in probability theory.

Determining the probability of the sum of many (more than two) joint events is quite cumbersome. To calculate it, you need to use the formulas that are provided for these cases.

Dependent Events

Events are called dependent if the occurrence of one (A) of them affects the probability of the occurrence of another (B). Moreover, the influence of both the occurrence of event A and its non-occurrence is taken into account. Although events are called dependent by definition, only one of them is dependent (B). Ordinary probability was denoted as P(B) or the probability of independent events. In the case of dependent events, a new concept is introduced - conditional probability P A (B), which is the probability of a dependent event B, subject to the occurrence of event A (hypothesis), on which it depends.

But event A is also random, so it also has a probability that needs and can be taken into account in the calculations performed. The following example will show how to work with dependent events and a hypothesis.

An example of calculating the probability of dependent events

A good example for calculating dependent events would be a standard deck of cards.

Using a deck of 36 cards as an example, let’s look at dependent events. We need to determine the probability that the second card drawn from the deck will be of diamonds if the first card drawn is:

  1. Bubnovaya.
  2. A different color.

Obviously, the probability of the second event B depends on the first A. So, if the first option is true, that there is 1 card (35) and 1 diamond (8) less in the deck, the probability of event B:

R A (B) =8/35=0.23

If the second option is true, then the deck has 35 cards, and the full number of diamonds (9) is still retained, then the probability of the following event B:

R A (B) =9/35=0.26.

It can be seen that if event A is conditioned on the fact that the first card is a diamond, then the probability of event B decreases, and vice versa.

Multiplying dependent events

Guided by the previous chapter, we accept the first event (A) as a fact, but in essence, it is of a random nature. The probability of this event, namely drawing a diamond from a deck of cards, is equal to:

P(A) = 9/36=1/4

Since the theory does not exist on its own, but is intended to serve for practical purposes, it is fair to note that what is most often needed is the probability of producing dependent events.

According to the theorem on the product of probabilities of dependent events, the probability of occurrence of jointly dependent events A and B is equal to the probability of one event A, multiplied by the conditional probability of event B (dependent on A):

P(AB) = P(A) *P A(B)

Then, in the deck example, the probability of drawing two cards with the suit of diamonds is:

9/36*8/35=0.0571, or 5.7%

And the probability of extracting not diamonds first, and then diamonds, is equal to:

27/36*9/35=0.19, or 19%

It can be seen that the probability of event B occurring is greater provided that the first card drawn is of a suit other than diamonds. This result is quite logical and understandable.

Total probability of an event

When a problem with conditional probabilities becomes multifaceted, it cannot be calculated using conventional methods. When there are more than two hypotheses, namely A1, A2,…, A n, ..forms a complete group of events provided:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

So, the formula for the total probability for event B with a complete group of random events A1, A2,..., A n is equal to:

A look into the future

The probability of a random event is extremely necessary in many areas of science: econometrics, statistics, physics, etc. Since some processes cannot be described deterministically, since they themselves are probabilistic in nature, special working methods are required. The theory of event probability can be used in any technological field as a way to determine the possibility of an error or malfunction.

We can say that by recognizing probability, we in some way take a theoretical step into the future, looking at it through the prism of formulas.

Knowing how to estimate the likelihood of an event based on the odds is essential to choosing the right bet. If you don't understand how to convert a bookmaker's odds into a probability, you will never be able to determine how the bookmaker's odds compare to the actual odds of the event happening. You should understand that if the probability of an event according to the bookmakers is lower than the probability of the same event according to your own version, a bet on this event will be valuable. You can compare odds for different events on the website Odds.ru.

1.1. Types of odds

Bookmakers usually offer three types of odds - decimal, fractional and American. Let's look at each of the varieties.

1.2. Decimal odds

Decimal odds when multiplied by the bet size allow you to calculate the entire amount that you will receive in your hands if you win. For example, if you bet $1 on odds of 1.80, if you win, you will receive $1.80 ($1 is the bet amount returned, 0.80 is the winnings on the bet, which is also your net profit).

That is, the probability of outcome, according to bookmakers, is 55%.

1.3. Fractional odds

Fractional odds are the most traditional type of odds. The numerator shows the potential net winnings. The denominator is the amount of the bet that needs to be made in order to get this winning. For example, odds of 7/2 mean that in order to net a win of $7, you would need to bet $2.

In order to calculate the probability of an event based on a decimal coefficient, you should carry out simple calculations - divide the denominator by the sum of the numerator and denominator. For the above odds of 7/2, the calculation will be as follows:

2 / (7+2) = 2 / 9 = 0,22

That is, the probability of outcome, according to bookmakers, is 22%.

1.4. American odds

This type of odds is popular in North America. At first glance, they seem quite complex and incomprehensible, but do not be alarmed. Understanding American odds can be useful, for example, when playing in American casinos, to understand the quotes shown on North American sports broadcasts. Let's look at how to estimate the probability of an outcome based on American odds.

First of all, you need to understand that American odds can be positive and negative. A negative American coefficient always comes in the format, for example, “-150”. This means that in order to get $100 in net profit (winnings), you need to bet $150.

The positive American coefficient is calculated in reverse. For example, we have a coefficient of “+120”. This means that in order to get $120 in net profit (winnings), you need to bet $100.

The probability calculation based on negative American odds is done using the following formula:

(-(negative American coefficient)) / ((-(negative American coefficient)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

That is, the probability of an event for which a negative American coefficient of “-150” is given is 60%.

Now consider similar calculations for the positive American coefficient. The probability in this case is calculated using the following formula:

100 / (positive American coefficient + 100)

100 / (120 + 100) = 100 / 220 = 0.45

That is, the probability of an event for which a positive American coefficient of “+120” is given is 45%.

1.5. How to convert odds from one format to another?

The ability to convert odds from one format to another can serve you well later. Oddly enough, there are still offices in which the odds are not converted and are shown only in one format, which is unusual for us. Let's look at examples of how to do this. But first, we need to learn how to calculate the probability of an outcome based on the coefficient given to us.

1.6. How to calculate decimal odds based on probability?

Everything is very simple here. It is necessary to divide 100 by the probability of the event as a percentage. That is, if the estimated probability of an event is 60%, you need to:

With an estimated probability of an event of 60%, the decimal odds will be 1.66.

1.7. How to calculate fractional odds based on probability?

In this case, you need to divide 100 by the probability of the event and subtract one from the result obtained. For example, the probability of an event is 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

That is, we get a fractional coefficient of 1.5/1 or, for ease of calculation, 3/2.

1.8. How to calculate the American odds based on the probable outcome?

Here, much will depend on the probability of the event - whether it will be more than 50% or less. If the probability of an event is more than 50%, then the calculation will be made using the following formula:

- ((probability) / (100 - probability)) * 100

For example, if the probability of an event is 80%, then:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

With an estimated probability of an event of 80%, we received a negative American coefficient of “-400”.

If the probability of an event is less than 50 percent, then the formula will be:

((100 - probability) / probability) * 100

For example, if the probability of an event is 40%, then:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

With an estimated probability of an event of 40%, we received a positive American coefficient of “+150”.

These calculations will help you better understand the concept of bets and odds, and learn how to evaluate the true value of a particular bet.

Editor's Choice
M.: 2004. - 768 p. The textbook discusses the methodology, methods and techniques of sociological research. Particular attention is paid...

The original question that led to the creation of resilience theory was “what psychological factors contribute to successful coping...

The nineteenth and twentieth centuries were significant in the history of mankind. In just a hundred years, man has made significant progress in his...

R. Cattell's multifactorial personality technique is currently most often used in personality research and has received...
Psychedelic substances have been used by most peoples of the world for thousands of years. World experience in healing and spiritual growth with the help of...
Founder and director of the educational and health center “Temple of Health”. Encyclopedic YouTube 1 / 5 Born into a family of personnel...
Far Eastern State Medical University (FESMU) This year the most popular specialties among applicants were:...
Presentation on the topic "State Budget" in economics in powerpoint format. In this presentation for 11th grade students...
China is the only country on earth where traditions and culture have been preserved for four thousand years. One of the main...