Хиральность правой и левой руки. Хиральность и оптическая активность. Хиральность в неорганической химии


Понятие хиральности – одно из важнейших в современной стереохимии.Модель является хиральной, если она не обладает никакими элементами симметрии (плоскостью, центром, зеркально-поворотными осями), кроме простых осей вращения. Мы называем молекулу, которая описывается такой моделью, хиральной (что означает «подобная руке», от греч. хиро – рука) по той причине, что, как и руки, молекулы не совместимы со своими зеркальными отображениями.На рис. 1 приведен ряд простых хиральных молекул. Совершенно очевидны два факта: во-первых, пары приве­денных молекул представляют зеркальные отражения друг дру­га, во-вторых, эти зеркальные отражения нельзя совместить друг с другом. Можно заметить, что в каждом случае молекула содержит углеродный атом с четырьмя различными заместителями. Такие атомы называют асимметрически­ми. Асимметрический атом углерода является хиральным или стереогенным центром. Это наиболее распространенный тип хиральности. Если молекула хиральна, то она может существовать в двух изомерных формах, связанных как предмет и его зеркальное отражение и несовместимых в пространстве. Такие изомеры (пара) называются энантиомерами .

Термин «хиральный» не допускает вольного толкования. Когда хиральной является молекула, то она, по аналогии с рукой, должна быть либо левой, либо правой. Когда же мы называем хиральным вещество или некоторый его образец, то это просто обозначает, что оно (он) состоит из хиральных молекул; при этом вовсе не обязательно, что все молекулы одинаковы с точки зрения хиральности (левые или правые, R или S , см. раздел 1.3). Можно выделить два предельных случая. В первом образец состоит из одинаковых с точки зрения хиральности молекул (гомохиральных, только R или только S ); такой образец называют энантиомерно чистым . Во-втором (противоположном) случае образец состоит из одинакового числа разных с точки зрения хиральности молекул (гетерохиральных, мольное соотношение R : S =1:1); такой образец тоже хиральный, но рацемический . Есть и промежуточный случай – неэквимолярная смесь энантиомеров. Такую смесь называют скалемической или нерацемической. Таким образом, утверждение, что макроскопический образец (в отличие от индивидуальной молекулы) хирален, следует считать не вполне ясным и поэтому в некоторых случаях недостаточным. Может потребоваться дополнительное указание, является ли образец рацемическим или нерацемическим. Отсутствие точности в понимании этого ведет к определенного рода заблуждениям, например, в заголовках статей, когда провозглашается синтез некоторого хирального соединения, но остается непонятным, желает ли автор просто привлечь внимание к самому факту хиральности обсуждаемой в статье структуры, либо продукт действительно был получен в виде единственного энантиомера (т.е. ансамбля гомохиральных молекул; этот ансамбль, впрочем, не стоит называть гомохиральным образцом). Таким образом, в случае хирального нерацемического образца правильнее говорить «энантиомерно обогащенный» или «энантиомерно чистый» .

      Способы изображения оптических изомеров

Способ изображения выбирается автором исключительно из соображений удобства передачи информации. На рисунке 1 изображения энантиомеров даны с помощью перспективных картинок. При этом принято связи, лежащие в плоскости изображения, рисовать сплошной линией; связи, уходящие за плоскость, - пунктиром; а связи, направленные к наблюдателю, - жирной линией. Такой способ изображения вполне информативен для структур с одним хиральным центром. Эти же молекулы можно изобразить в виде проекции Фишера. Данный способ был предложен Э.Фишером для более сложных структур (в частности, углеводов), имеющих два и более хиральных центра.

Зеркальная плоскость

Рис. 1

Для построения проекционных формул Фишера тетраэдр поворачивают так, чтобы две связи, лежащие в горизонтальной плоскости, были направлены к наблюдателю, а две связи, лежащие в вертикальной плоскости, - от наблюдателя. На плоскость изображения попадает только асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены примеры различных способов изображения одной и той же структуры с определенной конфигурацией (рис. 2)

Проекция Фишера

Рис. 2

Приведем несколько примеров проекционных формул Фишера (рис.3)

(+)-(L )-аланин(-)-2-бутанол (+)-(D )-глицериновый альдегид

Рис. 3

Поскольку на тетраэдр можно смотреть с разных сторон, то каждый стереоизомер может быть изображен двенадцатью (!) различными проекционными формулами. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную (номенклатурную) функцию, если она находится в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулу нельзя выводить из плоскости чертежа и нельзя поворачивать на 90 о, хотя можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла (рис. 4)

Рис. 4

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы (рис.5)

Рис. 5

3. Одна (или любое нечетное число) перестановка заместителей у асимметрического центра приводит к формуле оптического антипода (рис.6)

Рис. 6

4. Поворот в плоскости чертежа на 90 0 превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом (рис.7)

Рис. 7

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее (рис.8); четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

Рис. 8

Проекции Фишера нельзя применять к молекулам, хиральность которых связана не с хиральным центром, а с другими элементами (осью, плоскостью). В этих случаях необходимы трехмерные изображения.

      D , L - Номенклатура Фишера

Одну проблему мы обсудили – как изобразить трехмерную структуру на плоскости. Выбор способа диктуется исключительно удобством представления и восприятия стреоинформации. Следующая проблема связана с составлением названия для каждого индивидуального стереоизомера. В названии должна быть отражена информация о конфигурации стереогенного центра. Исторически первой номенклатурой для оптических изомеров была D , L - номенклатура, предложенная Фишером. До 1960–х годов боле привычным было обозначать конфигурацию хиральных центров на основании плоских проекций (Фишера), а не на основании трехмерных 3D – формул, при этом использовались дескрипторы D и L . В настоящее время D , L –система используется ограниченно – главным образом для таких природных соединений, как аминокислоты, оксикислоты и углеводы. Примеры, иллюстрирующие ее применение, показаны на рис.10.

Рис. 10

Для α – аминокислот конфигурация обозначается символом L , если в проекционной формуле Фишера амино –(или аммонийная) группа расположена слева,; символ D используется для противоположного энантиомера. Для сахаров обозначение конфигурации основано на ориентации ОН – группы с высшим номером (самой удаленной от карбонильного конца). Если ОН – группа направлена вправо, то это – конфигурация D ; если ОН слева – конфигурация L .

Система Фишера в свое время позволила создать логичную и непротиворечивую стереохимическую систематику большого числа природных соединений, ведущих свое происхождение от аминокислот и сахаров. Однако ограничения Фишеровской системы, а также тот факт, что в 1951 г. появился рентгеноструктурный метод определения истинного расположения групп вокруг хирального центра, привели к созданию в 1966 г. новой, более строгой и непротиворечивой системы описания стереоизомеров, известной под названием R , S - номенклатуры Кана-Ингольда-Прелога (КИП). В системе КИП к обычному химическому названию прибавляются специальные дескрипторы R или S (в тексте выделяются курсивом), строго и однозначно определяющие абсолютную конфигурацию.

      Номенклатура Кана-Ингольда-Прелога

Для того,чтобы определить дескриптор R или S для данного хирального центра, используется так называемое правило хиральности. Рассмотрим четыре заместителя, связанные с хиральным центром. Их следует расположить в единообразной последовательности стереохимического старшинства; для удобства давайте обозначим эти заместители символами А, В, D и Е и условимся считать, что в общей последовательности старшинства (иначе говоря, по приори­тету) А старше В, В старше D, D старше E(A>B>D>E). Правило хиральности КИП требует, чтобы модель рассматривалась со стороны, противоположной той, которую занимает заместитель Е с низшим приоритетом или стереохимически младший заместитель (рис.11). Тогда остальные три заместителя образуют нечто вроде треножника, ножки которого направлены на зрителя.

Рис. 11

Если падение старшинства заместителей в ряду A>B>D осуществляется по часовой стрелке (как на рис 11), то центру присваивается конфигурационный дескриптор R ( от латинского слова rectus - правый). При другом расположении, когда стереохимическое старшинство заместителей падает против часовой стрелки, центру присваивается конфигурационный дескриптор S (от латинского sinister - левый).

При изображении соединений с помощью Фишеровских про­екций можно легко определить конфигурацию без построения пространственных моделей. Формулу надо записать так, чтобы младший заместитель находился внизу или вверху, так как по правилам представления проекций Фишера вертикальные связи направлены от наблюдателя (рис.12). Если при этом остальные заместители в порядке уменьшения старшинства располагаются по часовой стрелке, соединение относят к (R )-ряду, а если про­тив часовой стрелки, то к (S )-ряду, например:

Рис. 12

Если младшая группа не находится на вертикальных связях, то следует поменять ее местами с нижней группой, но следует помнить, что при этом происходит обращение конфигурации. Можно сделать две любые перестановки – при этом конфигурация не изменится.

Таким образом, определяющим является стереохимическое старшинство . Обсудим теперь правила последовательности старшинства , т.е. правила, по которым группы А,В,D и Е располагают в порядке приоритета.

    Предпочтение по старшинству отдается атомам с большим атомным номером. Если номера одинаковы (в случае изотопов), то более старшим становится атом с наибольшей атомной массой (например, D>Н). Самый младший «заместитель» - неподеленная электронная пара (например, у азота). Таким образом, старшинство возрастает в ряду: не­поделенная пара

Рассмотрим простой пример: в бромхлорфторметане CHBrCIF (рис.13) имеется один стереогенный центр, и два энантиомера можно раз­личить следующим образом. Сначала ранжируют заместители по их стереохимическому старшинству: чем больше атомный но­мер, тем старше заместитель. Поэтому в данном примере Br > С1 > F > Н, где «>» обозначает «более предпочтителен» (или «старше»). Следующий шаг - рассмотреть молекулу со стороны, проти­воположной самому младшему заместителю, в данном случае во­дороду. Видно, что три остальных заместителя расположены в углах треугольника и направлены к наблюдателю. Если старшинство в этой тройке заместителей уменьшает­ся по часовой стрелке, то этот энантиомер обозначают как R . При другом расположении, когда старшинство заместителей падает против часовой стрелки, энантиомер обозначают как S . Обозначения R и S пишут курсивом и помещают в скобках перед названием структуры. Таким образом, два рассмотренных энантиомера имеют названия (S )-бромхлорфторметан и (R )-бромхлорфторметан.

Рис. 13

2. Если с асимметрическим атомом непосредственно связаны два, три или все четыре одинаковых атома, старшинство устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство.

Рис. 14

Например, в молекуле 2-бром-3-метил-1-бутанола (рис.14) по первому поясу легко определяется самый старший и самый младший заместители – это бром и водород соответственно. Но по первому атому групп СН 2 ОН и СН(СН 3) 2 установить старшинство не удается, так как в обоих случаях это атом углерода. Для того чтобы определить, какая из групп старше, снова применяют правило последовательности, но теперь рассматривают атомы следующего пояса. Сравнивают два набора атомов (две тройки), записанных в порядке падения старшинства. Старшинство теперь определяют по первой точке, где обнаруживается различие. Группа С Н 2 ОН – кислород, водород, водород С (О НН) или в цифрах 6(8 11). Группа С Н(СН 3) 2 – углерод, углерод, водород С (С СН) или 6(6 61). Первая точка различия подчеркнута: кислород старше углерода (по атомному номеру), поэтому группа СН 2 ОН старше СН(СН 3) 2 . Теперь можно обозначить конфигурацию энантиомера, изображенного на рисунке 14 как (R ).

Если и такая процедура не привела к построению однозначной иерархии, ее продолжают на все более возрастающих расстояни­ях от центрального атома, пока, наконец, не встретятся разли­чия, и все четыре заместителя получат свое старшинство. При этом любое предпочтение, приобретаемое тем или иным заместителем на одной из стадий согласования старшинства, считается окончательным и на последующих стадиях переоценке не подле­жит.

3. Если в молекуле встречаются точки разветвления, процедуру установления старшинства атомов следует продолжать вдоль молекулярной цепи наибольшего старшинства. Предположим, следует определить последовательность старшинства двух заместителей, изображенных на рис.15. Очевидно, что решение не будет достигнуто ни в первом (С), ни во втором (С,С,Н) ни в третьем (С,Н,F,С,Н,Br) слоях. В этом случае придется переходить в четвертый слой, но сделать это следует по пути, преимущество которого установлено в третьем слое (Br >F). Следовательно, решение о приоритете заместителя В над заместителем А делается на основании того, что в четвертом слое Br >CI для той ветви, переход на которую диктуется старшинством в третьем слое, а не на основании того, что наибольшим атомным номером в четвертом слое обладает атом I (который находится на менее предпочтительной и поэтому не исследуемой ветви).

Рис. 15

4. Кратные связи представляются как сумма соответствующих простых связей. В соответствии с этим правилом каждому атому, связанному кратной связью, ставится в соответствие дополнительный «фантомный» атом (или атомы) того же сорта, расположенный на другом конце кратной связи. Комплементарные (дополнительные или фантомные) атомы заключаются в скобки, и считается, что они не несут никаких заместителей в следующем слое.В каче­стве примера рассмотрим представления следующих групп (рис.16).

Группа Представление

Рис. 16

5. Искусственное увеличение числа заместителей требуется и тогда, когда заместитель (лиганд) является бидентатным (или три-, или тетрадентатным),а также когда заместитель содержит циклический или бициклический фрагмент. В таких случаях каждая ветвь циклической структуры рассекается после точки ветвления [где она раздваивается сама по себе], и атом, являющий точкой ветвления, помещается (в скобках) в конце цепи, возникшей в результате рассечения. На рис.17 на примере производного тетрагидрофурана (ТГФ) рассмотрен случай бидентатного (циклического) заместителя. Две ветви пятичленного кольца (по отдельности) рассекаются по связям с хиральным атомом, который после этого добавляется к концу каждой из двух вновь образованных цепей. Видно, что в результате рассечения А получается гипотетический заместитель –СН 2 ОСН 2 СН 2 -(С), который оказывается старше, чем реальный ациклический заместитель -СН 2 ОСН 2 СН 3 по причине преимущества фантомного (С) на конце первого заместителя. Напротив, образованный в результате рассечения В гипотетический лиганд –СН 2 СН 2 ОСН 2 –(С) по старшинству оказывается ниже реального заместителя –СН 2 СН 2 ОСН 2 СН 3 , поскольку у последнего к концевому углероду присоединены три атома водорода, а у первого в этом слое нет ни одного. Следовательно, с учетом установленного порядка старшинства заместителей, конфигурационным символом для данного энантиомера оказывается S .

Определяют старшинство

Заместитель А

В >A

Заместитель А

Рис.17

Рис. 18

Сходный случай рассечения циклического заместителя поясняется на примере соединения на рис. 18 , где структура В иллюстрирует трактовку циклогексильного кольца (в структуре А ). В этом случае правильной последовательностью старшинства является ди-н -гесилметил > циклогексил > ди-н -пентилметил > Н.

Теперь мы достаточно подготовлены, чтобы рассмотреть такой заместитель, как фенил (рис.19 структура А ). Схему раскрытия каждой кратной связи мы обсудили выше. Поскольку (в любой структуре Кекуле) каждый из шести атомов углерода связан двойной связью с другим атомом углерода, то (в системе КИП) каждый углеродный атом кольца несет в качестве «заместителя» дополнительный углерод. Дополненное таким образом кольцо (рис.19, структура В ) затем раскрывается по правилам для циклических систем. В результате рассечение описывается схемой, изображенной на рис.19, структура С .

Рис. 19

6. Теперь мы рассмотрим хиральные соединения, в которых различия между заместителями носят не материальный или конституционный характер, а сводятся к различиям в конфигурации. Соединения, содержащие более одного хирального центра, будут рассмотрены ниже (см. раздел 1.4) Здесь же мы коснемся заместителей, которые отличаются цис– транс – изомерией (олефинового типа). Согласно Прелогу и Хельмхену, олефиновый лиганд, в котором старший заместитель, расположен по ту же сторону от двойной связи олефина, что и хиральный центр, обладает преимуществом над лигандом, в котором старший заместитель оказывается в транс –положении к хиральному центру. Это положение не имеет отношения ни к классической цис–транс- , ни к E –Z–номенклатуре для конфигурации двойной связи. Примеры изображены на рис.20.

Рис. 20

      Соединения с несколькими хиральными центрами

Если в молекуле имеются два хиральных центра, то, поскольку каждый центр может иметь (R )- или (S )-конфигурацию, возможно существование четырех изомеров - RR , SS , RS и SR :

Рис. 21

Поскольку молекула имеет только одно зеркальное отображение, энантиомером соединения (RR ) может быть только изомер (SS ). Аналогично другую пару энантиомеров образуют изомеры (RS ) и (SR ). Если меняется конфигурация лишь одного асимметрическо­го центра, то такие изомеры называются диастереомерами. Диастереомеры - это стереоизомеры, не являющиеся энантиомерами. Так, диастереомерны пары (RR )/(RS ), (RR )/(SR ), (SS )/(RS ) и (SS )/(SR ). Хотя в общем случае при сочетании двух хиральных центров образуются четыре изомера, сочетание центров одинакового хи­мического строения дает лишь три изомера: (RR ) и (SS ), являю­щиеся энантиомерами, и (RS ), находящийся в диастереомерном отношении к обоим энантиомерам (RR ) и (SS ). Типичным при­мером является винная кислота (рис.22), которая имеет только три изо­мера: пару энантиомеров и мезо-форму .

Рис. 22

мезо-Винная кислота является (R , S )-изомером, который оптически неактивен, поскольку объединение двух зеркально-симметричных фраг­ментов приводит к появлению плоскости симметрии (а). мезо-Винная кислота представляет собой пример ахирального соеди­нения мезо-конфигурации, которое построено из равного числа одинаковых по структуре, но разных по абсолютной конфигура­ции хиральных элементов.

Если в молекуле имеется п хиральных центров, максималь­ное число стереоизомеров можно рассчитать по формуле 2 n ; правда, иногда число изомеров будет меньше благодаря нали­чию мезо-форм.

Для наименований стереоизомеров молекул, содержащих два асимметрических атома углерода, два заместителя при каждом из которых одинаковы, а третьи отличаются, часто используют пре­фиксы эритро- и трео - от названий сахаров эритрозы и треозы. Эти префиксы характеризуют систему в целом, а не каждый хиральный центр в отдельности. При изображении та­ких соединений с помощью проекций Фишера в паре эритро- изомеров одинаковые группы располагаются с одной стороны, и если бы разные группы (С1 и Вг в приведенном ниже приме­ре) были одинаковы, получилась бы мезо-форма. В паре трео- изомеров одинаковые группы располагаются с разных сторон, и если бы разные группы были одинаковы, новая пара осталась бы энантиомерной парой.

Рис. 23

Все рассмотренныевыше примерысоединений имеют центр хиральности. Таким центром является асимметрический атом углерода. Однако, центром хиральности могут быть и другие атомы (кремния, фосфора, серы), как, например, в метилнафтилфенилсилане, о-анизилметилфенилфосфине, метил-п-толилсульфоксиде (рис. 24)

Рис. 24

      Хиральность молекул, лишенных хиральных центров

Необходимым и достаточным условием хиральности молекулы является ее несовместимость со своим зеркальным изображением. Наличие единственного (конфигурационно устойчивого) хирального центра в молекуле является достаточным, но вовсе не необходимым условием существования хиральности. Рассмотрим хиральные молекулы, лишенные хиральных центров. Некоторые примеры приведены нарисунках 25 и 26.

Рис. 25

Рис. 26

Это соединения с осями хиральности (аксиальный тип хиральности ): аллены; алкилиденциклоалканы; спираны; так называемые атропоизомеры (бифенилы и похожие соединения, хиральность которых возникает благодаря затрудненному вращению вокруг простой связи). Другой элемент хиральности – плоскость хиральности (планарный тип хиральности ). Примерами таких соединений являются анса-соединения (в которых алициклическое кольцо слишком мало, чтобы ароматическое кольцо могло через него провернуться); парациклофаны; металлоцены. Наконец хиральность молекулы может быть связана со спиральной организацией молекулярной структуры. Молекула может заворачиваться либо в левую, либо в правую спираль. В этом случае говорят о спиральности (спиральный тип хиральности).

Для того чтобы определить конфигурацию молекулы, обладающей осью хиральности, необходимо ввести дополнительный пункт в правило последовательности: ближайшие к наблюдателю группы считаются старше удаленных от наблюдателя групп. Это дополнение необходимо сделать, так как для молекул с аксиальной хиральностью допустимо наличие одинаковых заместителей на противоположных концах оси. Применение этого правила к молекулам, изображенным на рис. 25, показано на рис. 27.

Рис. 27

Во всех случаях молекулы рассматриваются вдоль хиральной оси слева. При этом следует понимать, что если молекулы рассматриваются справа, то конфигурационный дескриптор останется тем же. Таким образом, пространственное расположение четырех опорных групп соответствует вершинам виртуального тетраэдра и может быть представлено с помощью соответствующих проекций (рис.27). Для определения соответствующего дескриптора пользуемся стандартными правилами R , S -номенклатуры. В случае бифенилов важно заметить, что заместители в кольце рассматриваются, начиная от центра (через который проходит ось хиральности) к перифирии, в нарушении стандартных правил последовательности. Так, для бифенила на рис. 25 правильная последовательность заместителей в правом кольце С-ОСН 3 >С-Н; атом хлора слишком удален, чтобы принимать его во внимание. Опорные атомы (те, по которым определяют конфигурационный символ) оказываются теми же самыми, если молекулу рассматривать справа. Иногда, чтобы отличить аксиальную хиральность от других типов, используют дескрипторы aR и aS (или R a и S a ), однако использование префикса «a » не носит обязательного характера.

Альтернативно, молекулы с осями хиральности можно рассматривать как спиральные, и их конфигурацию можно обозначать символами Р и М . При этом для определения конфигурации рассматриваются только заместители с высшим приоритетом как в передней, так и задней (удаленной от наблюдателя) части структуры (заместители 1 и 3 на рис.27). Если переход от переднего заместителя 1 с высшим приоритетом к приоритетному заднему заместителю 3 осуществляется по часовой стрелке, то это конфигурация Р ; если против часовой стрелки, - это конфигурация М .

На рис. 26 показаны молекулы с плоскостями хиральности . Дать определение плоскости хиральности не так легко, и оно не столь однозначно, как определение центра и оси хиральности. Это плоскость, которая содержит как можно больше атомов молекулы, но при этом не все. Фактически хиральность потому (и только потому), что по крайней мере один заместитель (чаще больше) не лежит в плоскости хиральности. Так, хиральной плоскостью анса-соединения А является плоскость бензольного кольца. В парациклофане В в качестве хиральной плоскости рассматривается наиболее замещенное (нижнее) кольцо. Для того чтобы определить дескриптор для планарно-хиральных молекул, на плоскость смотрят со стороны ближайшего к плоскости, но не лежащего в этой плоскости атома (если имеется два или более кандидата, то выбирается тот, который находится ближе к атому с высшим приоритетом согласно правилам последовательности). Этот атом, иногда называемый пробным или пилотным атомом, на рис.26 отмечен стрелкой. Тогда, если три последовательных атома (a, b, c) c наивысшим приоритетом образуют в хиральной плоскости ломаную линию, изгибающуюся по часовой стрелке, то конфигурация соединения pR (или R p ), а если ломаная линия изгибается против часовой стрелки, то дескриптор конфигурации pS (или S p ). Планарная хиральность, подобно аксиальной хиральности, может альтернативно рассматриваться как разновидность хиральности. Для того чтобы определить направление (конфигурацию) спирали, нужно рассматривать пилотный атом вместе с атомами a,b и c, как они определены выше. Отсюда видно, что pR -соединениям соответствует Р-, а pS - соединениям – М –спиральность.

Стереоизомеры, их виды

Определение 1

Стереоизомеры – это вещества, в молекулах которых атомы связаны между собой одинаково, но расположение их в пространстве различно.

Стереоизомеры подразделяют на:

  • Энантиомеры (оптические изомеры). Имеют одинаковые физико – химические свойства (плотность, температуру кипения и плавления, растворимость, спектральные свойства) в ахиральном окружении, но различную оптическую активность.
  • Диастеромеры – это соединения, которые могут содержать два и более хиральных центра.

Под хиральностью понимают способность объекта не соответствовать своему зеркальному отражению. То есть, молекулы, не обладающие зеркально – поворотной симметрией, являются хиральными.

Определение 2

Прохиральная молекула – это молекула, которая может быть превращена в хиральную единственным изменением любого ее фрагмента.

В хиральных и прохиральных молекулах некоторые группы ядер, на первый взгляд химически эквивалентные, являются магнитно неэквивалентными, что подтверждают спектры ядерного магнитного резонанса. Это явление называется диастереотопией ядер, может наблюдаться по спектрам ядерного магнитного резонанса при наличии в одной молекуле прохирального и хирального фрагментов.

Например, в прохиральной молекуле две группы OPF2 являются эквивалентными, но в каждой группе атомов $PF_2$ атомы фтора неэквивалентны.

Это проявляется в константе спин – спинового взаимодействия 2/$FF$.

Если молекула оптически активная , то неэквивалентность ядер Х в тетраэдрических группах –$MX_2Y$ (например, -$CH_2R$, -$SiH_2R$ и др.) или пирамидальных группах –$MX_2$ (например, -$PF_2$, -$NH_2$ и др.) не зависит от высоты барьера внутреннего вращения этих групп. При вращении плоских групп –$MX_2$ и тетраэдрических –$MX_3$ потенциальный барьер очень низок, в результате чего ядра $X$ становятся эквивалентными.

Построение названий хиральных молекул

Современная система построения названий для хиральных молекул предложена Ингольдом, Каном и Прелогом. Согласно этой системе, для всех возможных групп $A$, $B$, $C$, $D$ при асимметричном атоме углерода выясняется порядок старшинства. Чем больше атомный номер, тем он старше:

Если атомы одинаковые, то сравнивают второе окружение:

Предположим, что группы расположены по уменьшению старшинства: $A → B → C → D$. Развернем молекулу таким образом, чтобы младший заместитель $D$ был направлен за плоскость рисунка, от нас. Тогда понижение старшинства в остальных группах может происходить либо по часовой, либо против часовой стрелки.

Замечание 1

Если понижение старшинства происходит по часовой стрелке при обозначении изомера используют символ $R$ (правый), если против часовой стрелки – $S$ (левый). Понятия «левый» и «правый» не отражают реального направления вращения линейно поляризованного света.

Эмиль Фишер предложил $DL$ –номенклатуру, согласно которой правовращающийся энантиомер обозначается буквой $D$, а левовращающийся – $L$. Эта номенклатура широко используется для обозначения аминокислот и углеводов.

Стереоспецифичность физиологической активности оптических изомеров

Оптические изомеры проявляют разную физиологическую активность. Активные центры ферментов и рецепторы состоят из аминокислотных остатков, которые являются оптически активными элементами.

Рецептор распознает физиологически активную молекулу по принципу «ключ в замке». При присоединении молекулы субстрата, активный центр меняет свою геометрию.

Например, никотиновый алкалоид содержит один центр оптической изомерии и может существовать в виде двух энантиомеров. $S$ - изомер расположен справа и является ядом для человека (летальная доза 20 мг), $R$- изомер менее ядовит:

$L$ – глутаминовую кислоту

широко используют в качестве усилителя вкуса мяса при приготовлении консервов. $D$ - глутаминовая кислота такими свойствами не обладает.

В соединении

есть два асимметричных атома углерода, следовательно, возможно существование 4 изомеров ($2^n$). Но только один ($R,R$)-изомер – хлоромицетин - проявляет свойства антибиотика

Получение чистых оптических изомеров является важной химико – технологической проблемой.

Пути получения чистых энантиомеров.

) — геометрическое свойство жесткого объекта (пространственной структуры) быть не совместимым со своим зеркальным отображением в идеальном плоском зеркале.

Описание

Хиральный объект не имеет элементов симметрии 2-го рода, таких, как плоскости симметрии, центры симметрии и зеркально-поворотные оси. Если хотя бы один из этих элементов симметрии присутствует, объект является ахиральным. Хиральными бывают молекулы, кристаллы, (например, ).

Хиральные молекулы могут существовать в виде двух оптических изомеров (энантиомеров), являющихся зеркальными отражениями друг друга и различающихся в способности вращать плоскость поляризации света по часовой (D-изомеры) или против часовой стрелки (L-изомеры) (рис.). Энантиомеры характеризуются совпадающими физическими свойствами, а также одинаковыми химическими свойствами при взаимодействии с ахиральными веществами. В то же время, на различиях во взаимодействии энантиомеров данного вещества с конкретным оптическим изомером другого вещества может быть основано разделение энантиомеров, например, метод хиральной . В химии хиральность чаще всего связана с наличием асимметрического углеродного центра, несущего четыре различных заместителя.

При наличии в молекуле нескольких асимметрических центров говорят о диастереоизомерии. В этом случае могут существовать несколько пар энантиомеров (пара энантиомеров должна характеризоваться взаимно противоположной конфигурацией всех асимметрических центров), а свойства диастереомеров из разных энантиомерных пар могут сильно отличаться.

Почти все биомолекулы хиральны, включая аминокислоты природного происхождения и сахара. В природе большинство этих веществ обладают определенной пространственной конфигурацией: например, большинство аминокислот относится к пространственной конфигурации L, а сахара - к D. В связи с этим, энантиомерная чистота является необходимым требованием к биологически активным препаратам.

Иллюстрации


Автор

  • Еремин Вадим Владимирович

Источники

  1. Химическая энциклопедия. Т. 5. - М.: Большая Российская энциклопедия, 1998. С. 538.
  2. Compendium of Chemical Technology. IUPAC Recommendations. - Blackwell, 1997.

Хиральность - несовместимость объекта со своим зеркальным отражением любой комбинацией вращений и перемещений в трехмерном пространстве. Речь идет только об идеальном плоском зеркале. В нем правша превращается в левшу и наоборот.

Хиральность типична для растений и животных, и сам термин происходит от греч. χείρ - рука.

Есть правые и левые ракушки и даже правые и левые клювы у клестов (рис. 1).

«Зеркальность» распространена и в неживой природе (рис. 2).

Рис. 2. Фото с сайта scienceblogs.com («Троицкий вариант» №24(218), 06.12.2016)" border="0">

В последнее время стали модны «хиральные», т. е. зеркальные часы (обратите внимание на надпись на циферблате) (рис. 3).

И даже в лингвистике есть место хиральности! Это палиндромы: слова и предложения-перевертыши, например: Я УДАРЮ ДЯДЮ, ТЁТЮ РАДУЯ, Я УДАРЮ ТЁТЮ, ДЯДЮ РАДУЯ или ЛЕЕНСОН - УДАВ, НО ОН В АДУ НОС НЕ ЕЛ!

Очень важна хиральность для химиков и фармацевтов. Химия занимается объектами в наномасштабе (модное слово «нано» происходит от греч. νάννος - карлик). Хиральности в химии посвящена монография, на обложке которой (на фото справа ) - хиральные колонны и две хиральные молекулы гексагелицена (от helix - спираль).

А важность хиральности для медицины символизирует обложка июньского номера американского журнала Journal of Chemical Education за 1996 год (рис. 4). На боку добродушно виляющего хвостом пса изображена структурная формула пеницилламина. Пес смотрит в зеркало, а оттуда на него глядит страшный зверь с оскаленной клыкастой пастью, горящими огнем глазами и вставшей дыбом шерстью. На боку зверя изображена та же самая структурная формула в виде зеркального отображения первой. Название опубликованной в этом номере статьи о лекарственных хиральных средствах было не менее красноречивым: «Когда молекулы лекарств смотрятся в зеркало». Почему же «зеркальное отражение» так драматически изменяет облик молекулы? И как узнали, что две молекулы являются «зеркальными антиподами»?

Поляризация света и оптическая активность

Со времен Ньютона в науке шли споры о том, представляет ли свет собой волны или частицы. Ньютон полагал, что свет состоит из частиц с двумя полюсами - «северным» и «южным». Французский физик Этьен Луи Малюс, ввел понятие о поляризованном свете, с одним направлением «полюсов». Теория Малюса не подтвердилась, однако название осталось.

В 1816 году французский физик Огюстен Жан Френель высказал необычную для того времени идею о том, что световые волны - поперечные, как волны на поверхности воды.

Френель объяснил и явление поляризации света: в обычном свете колебания происходят хаотично, во всех направлениях, перпендикулярных направлению луча. Но, пройдя через некоторые кристаллы, например исландского шпата или турмалина, свет приобретает особые свойства: волны в нем колеблются только в одной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы. Если второй такой же кристалл поставить перпендикулярно первому, поляризованный свет через него не пройдет.

Отличить обычный свет от поляризованного можно с помощью оптических приборов - поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Оказалось, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году французский физик Франсуа Доминик Араго у кристаллов кварца. Это связано со строением кристалла. Природные кристаллы кварца асимметричны, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения (рис. 5). Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 году французский физик Жан Батист Био и немецкий физик Томас Иоганн Зеебек выяснили, что некоторые органические вещества, например сахар и скипидар, также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состояниях. Оказалось, что каждый «цветовой луч» белого света поворачивается на разный угол. Сильнее всего поворачивается плоскость поляризации для фиолетовых лучей, меньше всего - для красных. Поэтому бесцветное вещество в поляризованном свете может стать окрашенным.

Как и в случае кристаллов, некоторые химические соединения могли существовать в виде как право-, так и левовращающих разновидностей. Однако оставалось неясным, с каким свойством молекул связано это явление: самый тщательный химический анализ не мог обнаружить между ними никаких различий! Такие разновидности веществ назвали оптическими изомерами, а сами соединения - оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров - оптически неактивные. Это обнаружил в 1830 году знаменитый шведский химик Йёнс Якоб Берцелиус: виноградная кислота С 4 Н 6 О 6 оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Но никто не знал, существует ли не встречающаяся в природе «левая» винная кислота - антипод правовращающей.

Открытие Пастера

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 году никому тогда не известный французский ученый Луи Пастер. Еще в студенческие годы он заинтересовался химией и кристаллографией, работая под руководством вышеупомянутого Жана Батиста Био и видного французского химика-органика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента - брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер приготовил раствор натриево-аммониевой соли оптически неактивной виноградной кислоты и медленным выпариванием воды получил красивые призматические кристаллы этой соли. Кристаллы эти, в отличие от кристаллов виноградной кислоты, оказались асимметричными. У части кристалликов одна характерная грань находилась справа, а у других - слева, причем по форме два типа кристаллов были как бы зеркальным отражением друг друга.

Тех и других кристаллов получилось поровну. Зная, что в подобных случаях кристаллы кварца вращают в разные стороны, Пастер решил проверить, не будет ли наблюдаться это явление и на полученной им соли. Вооружившись увеличительным стеклом и пинцетом, Пастер аккуратно разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением, а смесь растворов была оптически неактивной (правая и левая поляризации взаимно компенсировались). Пастер на этом не остановился. Из каждого из двух растворов с помощью сильной серной кислоты он вытеснил более слабую органическую кислоту. Можно было предположить, что в обоих случаях получится исходная виноградная кислота, которая оптически неактивна. Однако оказалось, что из одного раствора образовалась вовсе не виноградная, а известная правовращающая винная кислота, а из другого раствора получилась тоже винная кислота, но вращающая влево! Эти кислоты получили название d -винной (от лат. dexter - правый) и l- винной (от лат. laevus - левый). В дальнейшем направление оптического вращения стали обозначать знаками (+) и (–), а абсолютную конфигурацию молекулы в пространстве - буквами R и S . Итак, неактивная виноградная кислота оказалась смесью равных количеств известной «правой» винной кислоты и ранее неизвестной «левой». Именно поэтому равная смесь их молекул в кристалле или в растворе не обладает оптической активностью. Для такой смеси стали применять название «рацемат», от лат. racemus - виноград. Два антипода, дающие при смешении в равных количествах оптически неактивную смесь, получили название энантиомеров (от греч. έναντίος - противоположный).

Поняв значение своего эксперимента, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и воскликнул: «Я только что сделал великое открытие!» Кстати, Пастеру очень повезло с веществом: в дальнейшем химики обнаружили всего несколько подобных случаев кристаллизации при определенной температуре смеси оптически различных кристалликов, достаточно крупных, чтобы их можно было под лупой разделить пинцетом.

Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Во время посещения Германии один из аптекарей дал ему давно стоявшую склянку с виноградной кислотой, в которой завелась зеленая плесень. В своей лаборатории Пастер обнаружил, что бывшая когда-то неактивной кислота стала левовращающей. Оказалась, что зеленый плесневой грибок Penicillum glaucum «поедает» только правый изомер, оставляя левый без изменения. Такое же действие оказывает эта плесень на рацемат миндальной кислоты, только в данном случае она «поедает» левовращающий изомер, не трогая правовращающий.

Третий способ разделения рацематов был чисто химическим. Для него нужно было иметь оптически активное вещество, которое при взаимодействии с рацемической смесью по-разному связывалось бы к каждым из энантиомеров. В результате два вещества в смеси не будут антиподами (энантиомерами) и их можно будет разделить как два разных вещества. Это можно пояснить такой моделью на плоскости. Возьмем смесь двух антиподов - Я и R. Их химические свойства одинаковые. Внесем в смесь несимметричный (хиральный) компонент, например Z, который может реагировать с каким-либо участком в этих энантиомерах. Получим два вещества: ЯZ и ZR (или ЯZ и RZ). Эти структуры не являются зеркально симметричными, поэтому такие вещества будут чисто физически различаться (температурой плавления, растворимостью, еще чем-нибудь) и их можно разделить.

Пастер сделал еще много открытий, в числе которых прививки против сибирской язвы и бешенства, ввел методы асептики и антисептики.

Исследование Пастера, доказывающее возможность «расщепления» оптически неактивного соединения на антиподы - энантиомеры, первоначально вызвало у многих химиков недоверие, однако, как и последующие его работы, привлекло самое пристальное внимание ученых. Вскоре французский химик Жозеф Ашиль Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Немецкий химик Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось всё больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов.

Теория Вант-Гоффа

Такую теорию создал молодой голландский ученый Якоб Хендрик Вант-Гофф, который в 1901 году получил первую в истории Нобелевскую премию по химии. Согласно его теории, молекулы, как и кристаллы, могут быть хиральными - «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример - молекулы, в которых имеется так называемый асимметрический атом углерода, окруженный четырьмя разными группами. Это можно продемонстрировать на примере простейшей аминокислоты аланина. Две изображенные молекулы невозможно совместить в пространстве никакими поворотами (рис. 6, вверху).

Многие ученые отнеслись к теории Вант-Гоффа недоверчиво. А известный немецкий химик-органик, выдающийся экспериментатор, профессор Лейпцигского университета Адольф Кольбе разразился резкой до неприличия статьей в Journal für praktische Chemie с ехидным названием «Zeiche der Zeit» («Приметы времени»). Он сравнивал теорию Вант-Гоффа с «отбросами человеческого ума», с «кокоткой, наряженной в модные одежды и покрывшей лицо белилами и румянами, чтобы попасть в порядочное общество, в котором для нее нет места». Кольбе писал, что «некоему доктору Вант-Гоффу, занимающему должность в Утрехтском ветеринарном училище, очевидно, не по вкусу точные химические исследования. Он счел более приятным сесть на Пегаса (вероятно, взятого напрокат из ветеринарного училища) и поведать миру то, что узрел с химического Парнаса... Настоящих исследователей поражает, как почти неизвестные химики берутся так уверенно судить о высочайшей проблеме химии - вопросе о пространственном положении атомов, который, пожалуй, никогда не будет решен... Такой подход к научным вопросам недалек от веры в ведьм и духов. А таких химиков следовало бы исключить из рядов настоящих ученых и причислить к лагерю натурфилософов, совсем немногим отличающихся от спиритов ».

Со временем теория Вант-Гоффа получила полное признание. Каждый химик знает, что, если в смеси поровну «правых» и «левых» молекул, вещество в целом будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов, например ферментов, образуются асимметричные соединения. Так, в природе преобладают аминокислоты и сахара́ только одной конфигурации, а образование их антиподов подавлено. В некоторых случаях разные энантиомеры можно различить и без всяких приборов - когда они по-разному взаимодействуют с асимметрическими рецепторами в нашем организме. Яркий пример - аминокислота лейцин: ее правовращающий изомер сладкий, а левовращающий - горький.

Конечно, тут же возникает вопрос о том, как же появились на Земле первые оптически активные химические соединения, например та же природная правовращающая винная кислота, или как возникли «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что однозначного ответа на них нет и поныне. Ученые сходятся лишь в том, что существуют асимметричные неорганические или физические агенты (асимметричные катализаторы, поляризованный солнечный свет, поляризованное магнитное поле), которые могли дать начальный толчок асимметрическому синтезу органических веществ. Похожее явление мы наблюдаем и в случае асимметрии «вещество - антивещество», поскольку все космические тела состоят только из вещества, а отбор произошел на самых ранних стадиях образования Вселенной.

Хиральные лекарства

Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Человек - существо хиральное. И это относится не только к его внешнему виду. «Правые» и «левые» лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой левую руку своего гостя. Необходимость в оптически чистых энантиомерах объясняется также тем, что часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может в лучшем случае быть бесполезным, а в худшем - вызвать нежелательные побочные эффекты или даже быть токсичным. Это стало очевидным после нашумевшей трагической истории с талидомидом - лекарственным средством, которое назначали в 1960-е годы беременным женщинам как эффективное снотворное и успокаивающее. Однако со временем проявилось его побочное тератогенное (от греч. τέρας - чудовище) действие, и на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 1980-х годов выяснилось, что причиной несчастий был только один из энантиомеров талидомида - правовращающий - и только левовращающий изомер является мощным транквилизатором (рис. 6, внизу). К сожалению, такое различие в действии лекарственных форм раньше не было известно, поэтому продаваемый талидомид был рацемической смесью обоих антиподов. Они отличаются взаимным расположением в пространстве двух фрагментов молекулы.

Еще один пример. Пеницилламин, структура которого была нарисована на собаке и волке на обложке журнала, - довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, в ряде других случаев. При этом применяют только «левую» форму препарата, так как «правая» токсична и может привести к слепоте.

Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, левовращающий S -тироксин (лекарственный препарат левотроид) - это природный гормон щитовидной железы. А правовращающий R -тироксин (декстроид) понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, darvon и novrad для синтетического наркотического анальгетика и препарата от кашля соответственно.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них - сложная задача. Поэтому не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшая часть является оптически чистой, остальные - рацематы.

О хиральности молекул см. также:
Глава Происхождение хиральной чистоты из книги Михаила Никитина

Понятие хиральности – одно из важнейших в современной стереохимии.Модель является хиральной, если она не обладает никакими элементами симметрии (плоскостью, центром, зеркально-поворотными осями), кроме простых осей вращения. Мы называем молекулу, которая описывается такой моделью, хиральной (что означает «подобная руке», от греч. хиро – рука) по той причине, что, как и руки, молекулы не совместимы со своими зеркальными отображениями.На рис. 1 приведен ряд простых хиральных молекул. Совершенно очевидны два факта: во-первых, пары приве­денных молекул представляют зеркальные отражения друг дру­га, во-вторых, эти зеркальные отражения нельзя совместить друг с другом. Можно заметить, что в каждом случае молекула содержит углеродный атом с четырьмя различными заместителями. Такие атомы называют асимметрически­ми. Асимметрический атом углерода является хиральным или стереогенным центром. Это наиболее распространенный тип хиральности. Если молекула хиральна, то она может существовать в двух изомерных формах, связанных как предмет и его зеркальное отражение и несовместимых в пространстве. Такие изомеры (пара) называются энантиомерами .

Термин «хиральный» не допускает вольного толкования. Когда хиральной является молекула, то она, по аналогии с рукой, должна быть либо левой, либо правой. Когда же мы называем хиральным вещество или некоторый его образец, то это просто обозначает, что оно (он) состоит из хиральных молекул; при этом вовсе не обязательно, что все молекулы одинаковы с точки зрения хиральности (левые или правые, R или S , см. раздел 1.3). Можно выделить два предельных случая. В первом образец состоит из одинаковых с точки зрения хиральности молекул (гомохиральных, только R или только S ); такой образец называют энантиомерно чистым . Во-втором (противоположном) случае образец состоит из одинакового числа разных с точки зрения хиральности молекул (гетерохиральных, мольное соотношение R : S =1:1); такой образец тоже хиральный, но рацемический . Есть и промежуточный случай – неэквимолярная смесь энантиомеров. Такую смесь называют скалемической или нерацемической. Таким образом, утверждение, что макроскопический образец (в отличие от индивидуальной молекулы) хирален, следует считать не вполне ясным и поэтому в некоторых случаях недостаточным. Может потребоваться дополнительное указание, является ли образец рацемическим или нерацемическим. Отсутствие точности в понимании этого ведет к определенного рода заблуждениям, например, в заголовках статей, когда провозглашается синтез некоторого хирального соединения, но остается непонятным, желает ли автор просто привлечь внимание к самому факту хиральности обсуждаемой в статье структуры, либо продукт действительно был получен в виде единственного энантиомера (т.е. ансамбля гомохиральных молекул; этот ансамбль, впрочем, не стоит называть гомохиральным образцом). Таким образом, в случае хирального нерацемического образца правильнее говорить «энантиомерно обогащенный» или «энантиомерно чистый» .

      Способы изображения оптических изомеров

Способ изображения выбирается автором исключительно из соображений удобства передачи информации. На рисунке 1 изображения энантиомеров даны с помощью перспективных картинок. При этом принято связи, лежащие в плоскости изображения, рисовать сплошной линией; связи, уходящие за плоскость, - пунктиром; а связи, направленные к наблюдателю, - жирной линией. Такой способ изображения вполне информативен для структур с одним хиральным центром. Эти же молекулы можно изобразить в виде проекции Фишера. Данный способ был предложен Э.Фишером для более сложных структур (в частности, углеводов), имеющих два и более хиральных центра.

Зеркальная плоскость

Рис. 1

Для построения проекционных формул Фишера тетраэдр поворачивают так, чтобы две связи, лежащие в горизонтальной плоскости, были направлены к наблюдателю, а две связи, лежащие в вертикальной плоскости, - от наблюдателя. На плоскость изображения попадает только асимметрический атом. При этом сам асимметрический атом, как правило, опускают, сохраняя лишь перекрещивающиеся линии и символы заместителей. Чтобы помнить о пространственном расположении заместителей, часто сохраняют в проекционных формулах прерывистую вертикальную линию (верхний и нижний заместитель удалены за плоскость чертежа), однако часто этого не делают. Ниже приведены примеры различных способов изображения одной и той же структуры с определенной конфигурацией (рис. 2)

Проекция Фишера

Рис. 2

Приведем несколько примеров проекционных формул Фишера (рис.3)

(+)-(L )-аланин(-)-2-бутанол (+)-(D )-глицериновый альдегид

Рис. 3

Поскольку на тетраэдр можно смотреть с разных сторон, то каждый стереоизомер может быть изображен двенадцатью (!) различными проекционными формулами. Чтобы стандартизировать проекционные формулы, введены определенные правила их написания. Так, главную (номенклатурную) функцию, если она находится в конце цепи, принято ставить наверху, главную цепь изображать вертикально.

Для того чтобы сопоставлять "нестандартно" написанные проекционные формулы, надо знать следующие правила преобразования проекционных формул.

1. Формулу нельзя выводить из плоскости чертежа и нельзя поворачивать на 90 о, хотя можно вращать в плоскости чертежа на 180 о, не меняя их стереохимического смысла (рис. 4)

Рис. 4

2. Две (или любое четное число) перестановки заместителей у одного асимметрического атома не меняют стереохимического смысла формулы (рис.5)

Рис. 5

3. Одна (или любое нечетное число) перестановка заместителей у асимметрического центра приводит к формуле оптического антипода (рис.6)

Рис. 6

4. Поворот в плоскости чертежа на 90 0 превращает формулу в антиподную, если только при этом одновременно не изменить условие расположения заместителей относительно плоскости чертежа, т.е. считать, что теперь боковые заместители находятся за плоскостью чертежа, а верхний и нижний - перед ней. Если пользоваться формулой с пунктиром, то изменившаяся ориентация пунктира прямо напомнит об этом (рис.7)

Рис. 7

5. Вместо перестановок проекционные формулы можно преобразовывать путем вращения любых трех заместителей по часовой стрелке или против нее (рис.8); четвертый заместитель при этом положения не меняет (такая операция эквивалентна двум перестановкам):

Рис. 8

Проекции Фишера нельзя применять к молекулам, хиральность которых связана не с хиральным центром, а с другими элементами (осью, плоскостью). В этих случаях необходимы трехмерные изображения.

      D , L - Номенклатура Фишера

Одну проблему мы обсудили – как изобразить трехмерную структуру на плоскости. Выбор способа диктуется исключительно удобством представления и восприятия стреоинформации. Следующая проблема связана с составлением названия для каждого индивидуального стереоизомера. В названии должна быть отражена информация о конфигурации стереогенного центра. Исторически первой номенклатурой для оптических изомеров была D , L - номенклатура, предложенная Фишером. До 1960–х годов боле привычным было обозначать конфигурацию хиральных центров на основании плоских проекций (Фишера), а не на основании трехмерных 3D – формул, при этом использовались дескрипторы D и L . В настоящее время D , L –система используется ограниченно – главным образом для таких природных соединений, как аминокислоты, оксикислоты и углеводы. Примеры, иллюстрирующие ее применение, показаны на рис.10.

Рис. 10

Для α – аминокислот конфигурация обозначается символом L , если в проекционной формуле Фишера амино –(или аммонийная) группа расположена слева,; символ D используется для противоположного энантиомера. Для сахаров обозначение конфигурации основано на ориентации ОН – группы с высшим номером (самой удаленной от карбонильного конца). Если ОН – группа направлена вправо, то это – конфигурация D ; если ОН слева – конфигурация L .

Система Фишера в свое время позволила создать логичную и непротиворечивую стереохимическую систематику большого числа природных соединений, ведущих свое происхождение от аминокислот и сахаров. Однако ограничения Фишеровской системы, а также тот факт, что в 1951 г. появился рентгеноструктурный метод определения истинного расположения групп вокруг хирального центра, привели к созданию в 1966 г. новой, более строгой и непротиворечивой системы описания стереоизомеров, известной под названием R , S - номенклатуры Кана-Ингольда-Прелога (КИП). В системе КИП к обычному химическому названию прибавляются специальные дескрипторы R или S (в тексте выделяются курсивом), строго и однозначно определяющие абсолютную конфигурацию.

      Номенклатура Кана-Ингольда-Прелога

Для того,чтобы определить дескриптор R или S для данного хирального центра, используется так называемое правило хиральности. Рассмотрим четыре заместителя, связанные с хиральным центром. Их следует расположить в единообразной последовательности стереохимического старшинства; для удобства давайте обозначим эти заместители символами А, В, D и Е и условимся считать, что в общей последовательности старшинства (иначе говоря, по приори­тету) А старше В, В старше D, D старше E(A>B>D>E). Правило хиральности КИП требует, чтобы модель рассматривалась со стороны, противоположной той, которую занимает заместитель Е с низшим приоритетом или стереохимически младший заместитель (рис.11). Тогда остальные три заместителя образуют нечто вроде треножника, ножки которого направлены на зрителя.

Рис. 11

Если падение старшинства заместителей в ряду A>B>D осуществляется по часовой стрелке (как на рис 11), то центру присваивается конфигурационный дескриптор R ( от латинского слова rectus - правый). При другом расположении, когда стереохимическое старшинство заместителей падает против часовой стрелки, центру присваивается конфигурационный дескриптор S (от латинского sinister - левый).

При изображении соединений с помощью Фишеровских про­екций можно легко определить конфигурацию без построения пространственных моделей. Формулу надо записать так, чтобы младший заместитель находился внизу или вверху, так как по правилам представления проекций Фишера вертикальные связи направлены от наблюдателя (рис.12). Если при этом остальные заместители в порядке уменьшения старшинства располагаются по часовой стрелке, соединение относят к (R )-ряду, а если про­тив часовой стрелки, то к (S )-ряду, например:

Рис. 12

Если младшая группа не находится на вертикальных связях, то следует поменять ее местами с нижней группой, но следует помнить, что при этом происходит обращение конфигурации. Можно сделать две любые перестановки – при этом конфигурация не изменится.

Таким образом, определяющим является стереохимическое старшинство . Обсудим теперь правила последовательности старшинства , т.е. правила, по которым группы А,В,D и Е располагают в порядке приоритета.

    Предпочтение по старшинству отдается атомам с большим атомным номером. Если номера одинаковы (в случае изотопов), то более старшим становится атом с наибольшей атомной массой (например, D>Н). Самый младший «заместитель» - неподеленная электронная пара (например, у азота). Таким образом, старшинство возрастает в ряду: не­поделенная пара

Рассмотрим простой пример: в бромхлорфторметане CHBrCIF (рис.13) имеется один стереогенный центр, и два энантиомера можно раз­личить следующим образом. Сначала ранжируют заместители по их стереохимическому старшинству: чем больше атомный но­мер, тем старше заместитель. Поэтому в данном примере Br > С1 > F > Н, где «>» обозначает «более предпочтителен» (или «старше»). Следующий шаг - рассмотреть молекулу со стороны, проти­воположной самому младшему заместителю, в данном случае во­дороду. Видно, что три остальных заместителя расположены в углах треугольника и направлены к наблюдателю. Если старшинство в этой тройке заместителей уменьшает­ся по часовой стрелке, то этот энантиомер обозначают как R . При другом расположении, когда старшинство заместителей падает против часовой стрелки, энантиомер обозначают как S . Обозначения R и S пишут курсивом и помещают в скобках перед названием структуры. Таким образом, два рассмотренных энантиомера имеют названия (S )-бромхлорфторметан и (R )-бромхлорфторметан.

Рис. 13

2. Если с асимметрическим атомом непосредственно связаны два, три или все четыре одинаковых атома, старшинство устанавливается по атомам второго пояса, которые связаны уже не с хиральным центром, а с теми атомами, которые имели одинаковое старшинство.

Рис. 14

Например, в молекуле 2-бром-3-метил-1-бутанола (рис.14) по первому поясу легко определяется самый старший и самый младший заместители – это бром и водород соответственно. Но по первому атому групп СН 2 ОН и СН(СН 3) 2 установить старшинство не удается, так как в обоих случаях это атом углерода. Для того чтобы определить, какая из групп старше, снова применяют правило последовательности, но теперь рассматривают атомы следующего пояса. Сравнивают два набора атомов (две тройки), записанных в порядке падения старшинства. Старшинство теперь определяют по первой точке, где обнаруживается различие. Группа С Н 2 ОН – кислород, водород, водород С (О НН) или в цифрах 6(8 11). Группа С Н(СН 3) 2 – углерод, углерод, водород С (С СН) или 6(6 61). Первая точка различия подчеркнута: кислород старше углерода (по атомному номеру), поэтому группа СН 2 ОН старше СН(СН 3) 2 . Теперь можно обозначить конфигурацию энантиомера, изображенного на рисунке 14 как (R ).

Если и такая процедура не привела к построению однозначной иерархии, ее продолжают на все более возрастающих расстояни­ях от центрального атома, пока, наконец, не встретятся разли­чия, и все четыре заместителя получат свое старшинство. При этом любое предпочтение, приобретаемое тем или иным заместителем на одной из стадий согласования старшинства, считается окончательным и на последующих стадиях переоценке не подле­жит.

3. Если в молекуле встречаются точки разветвления, процедуру установления старшинства атомов следует продолжать вдоль молекулярной цепи наибольшего старшинства. Предположим, следует определить последовательность старшинства двух заместителей, изображенных на рис.15. Очевидно, что решение не будет достигнуто ни в первом (С), ни во втором (С,С,Н) ни в третьем (С,Н,F,С,Н,Br) слоях. В этом случае придется переходить в четвертый слой, но сделать это следует по пути, преимущество которого установлено в третьем слое (Br >F). Следовательно, решение о приоритете заместителя В над заместителем А делается на основании того, что в четвертом слое Br >CI для той ветви, переход на которую диктуется старшинством в третьем слое, а не на основании того, что наибольшим атомным номером в четвертом слое обладает атом I (который находится на менее предпочтительной и поэтому не исследуемой ветви).

Рис. 15

4. Кратные связи представляются как сумма соответствующих простых связей. В соответствии с этим правилом каждому атому, связанному кратной связью, ставится в соответствие дополнительный «фантомный» атом (или атомы) того же сорта, расположенный на другом конце кратной связи. Комплементарные (дополнительные или фантомные) атомы заключаются в скобки, и считается, что они не несут никаких заместителей в следующем слое.В каче­стве примера рассмотрим представления следующих групп (рис.16).

Группа Представление

Рис. 16

5. Искусственное увеличение числа заместителей требуется и тогда, когда заместитель (лиганд) является бидентатным (или три-, или тетрадентатным),а также когда заместитель содержит циклический или бициклический фрагмент. В таких случаях каждая ветвь циклической структуры рассекается после точки ветвления [где она раздваивается сама по себе], и атом, являющий точкой ветвления, помещается (в скобках) в конце цепи, возникшей в результате рассечения. На рис.17 на примере производного тетрагидрофурана (ТГФ) рассмотрен случай бидентатного (циклического) заместителя. Две ветви пятичленного кольца (по отдельности) рассекаются по связям с хиральным атомом, который после этого добавляется к концу каждой из двух вновь образованных цепей. Видно, что в результате рассечения А получается гипотетический заместитель –СН 2 ОСН 2 СН 2 -(С), который оказывается старше, чем реальный ациклический заместитель -СН 2 ОСН 2 СН 3 по причине преимущества фантомного (С) на конце первого заместителя. Напротив, образованный в результате рассечения В гипотетический лиганд –СН 2 СН 2 ОСН 2 –(С) по старшинству оказывается ниже реального заместителя –СН 2 СН 2 ОСН 2 СН 3 , поскольку у последнего к концевому углероду присоединены три атома водорода, а у первого в этом слое нет ни одного. Следовательно, с учетом установленного порядка старшинства заместителей, конфигурационным символом для данного энантиомера оказывается S .

Определяют старшинство

Заместитель А

В >A

Заместитель А

Рис.17

Рис. 18

Сходный случай рассечения циклического заместителя поясняется на примере соединения на рис. 18 , где структура В иллюстрирует трактовку циклогексильного кольца (в структуре А ). В этом случае правильной последовательностью старшинства является ди-н -гесилметил > циклогексил > ди-н -пентилметил > Н.

Теперь мы достаточно подготовлены, чтобы рассмотреть такой заместитель, как фенил (рис.19 структура А ). Схему раскрытия каждой кратной связи мы обсудили выше. Поскольку (в любой структуре Кекуле) каждый из шести атомов углерода связан двойной связью с другим атомом углерода, то (в системе КИП) каждый углеродный атом кольца несет в качестве «заместителя» дополнительный углерод. Дополненное таким образом кольцо (рис.19, структура В ) затем раскрывается по правилам для циклических систем. В результате рассечение описывается схемой, изображенной на рис.19, структура С .

Рис. 19

6. Теперь мы рассмотрим хиральные соединения, в которых различия между заместителями носят не материальный или конституционный характер, а сводятся к различиям в конфигурации. Соединения, содержащие более одного хирального центра, будут рассмотрены ниже (см. раздел 1.4) Здесь же мы коснемся заместителей, которые отличаются цис– транс – изомерией (олефинового типа). Согласно Прелогу и Хельмхену, олефиновый лиганд, в котором старший заместитель, расположен по ту же сторону от двойной связи олефина, что и хиральный центр, обладает преимуществом над лигандом, в котором старший заместитель оказывается в транс –положении к хиральному центру. Это положение не имеет отношения ни к классической цис–транс- , ни к E –Z–номенклатуре для конфигурации двойной связи. Примеры изображены на рис.20.

Рис. 20

      Соединения с несколькими хиральными центрами

Если в молекуле имеются два хиральных центра, то, поскольку каждый центр может иметь (R )- или (S )-конфигурацию, возможно существование четырех изомеров - RR , SS , RS и SR :

Рис. 21

Поскольку молекула имеет только одно зеркальное отображение, энантиомером соединения (RR ) может быть только изомер (SS ). Аналогично другую пару энантиомеров образуют изомеры (RS ) и (SR ). Если меняется конфигурация лишь одного асимметрическо­го центра, то такие изомеры называются диастереомерами. Диастереомеры - это стереоизомеры, не являющиеся энантиомерами. Так, диастереомерны пары (RR )/(RS ), (RR )/(SR ), (SS )/(RS ) и (SS )/(SR ). Хотя в общем случае при сочетании двух хиральных центров образуются четыре изомера, сочетание центров одинакового хи­мического строения дает лишь три изомера: (RR ) и (SS ), являю­щиеся энантиомерами, и (RS ), находящийся в диастереомерном отношении к обоим энантиомерам (RR ) и (SS ). Типичным при­мером является винная кислота (рис.22), которая имеет только три изо­мера: пару энантиомеров и мезо-форму .

Рис. 22

мезо-Винная кислота является (R , S )-изомером, который оптически неактивен, поскольку объединение двух зеркально-симметричных фраг­ментов приводит к появлению плоскости симметрии (а). мезо-Винная кислота представляет собой пример ахирального соеди­нения мезо-конфигурации, которое построено из равного числа одинаковых по структуре, но разных по абсолютной конфигура­ции хиральных элементов.

Если в молекуле имеется п хиральных центров, максималь­ное число стереоизомеров можно рассчитать по формуле 2 n ; правда, иногда число изомеров будет меньше благодаря нали­чию мезо-форм.

Для наименований стереоизомеров молекул, содержащих два асимметрических атома углерода, два заместителя при каждом из которых одинаковы, а третьи отличаются, часто используют пре­фиксы эритро- и трео - от названий сахаров эритрозы и треозы. Эти префиксы характеризуют систему в целом, а не каждый хиральный центр в отдельности. При изображении та­ких соединений с помощью проекций Фишера в паре эритро- изомеров одинаковые группы располагаются с одной стороны, и если бы разные группы (С1 и Вг в приведенном ниже приме­ре) были одинаковы, получилась бы мезо-форма. В паре трео- изомеров одинаковые группы располагаются с разных сторон, и если бы разные группы были одинаковы, новая пара осталась бы энантиомерной парой.

Рис. 23

Все рассмотренныевыше примерысоединений имеют центр хиральности. Таким центром является асимметрический атом углерода. Однако, центром хиральности могут быть и другие атомы (кремния, фосфора, серы), как, например, в метилнафтилфенилсилане, о-анизилметилфенилфосфине, метил-п-толилсульфоксиде (рис. 24)

Рис. 24

      Хиральность молекул, лишенных хиральных центров

Необходимым и достаточным условием хиральности молекулы является ее несовместимость со своим зеркальным изображением. Наличие единственного (конфигурационно устойчивого) хирального центра в молекуле является достаточным, но вовсе не необходимым условием существования хиральности. Рассмотрим хиральные молекулы, лишенные хиральных центров. Некоторые примеры приведены нарисунках 25 и 26.

Рис. 25

Рис. 26

Это соединения с осями хиральности (аксиальный тип хиральности ): аллены; алкилиденциклоалканы; спираны; так называемые атропоизомеры (бифенилы и похожие соединения, хиральность которых возникает благодаря затрудненному вращению вокруг простой связи). Другой элемент хиральности – плоскость хиральности (планарный тип хиральности ). Примерами таких соединений являются анса-соединения (в которых алициклическое кольцо слишком мало, чтобы ароматическое кольцо могло через него провернуться); парациклофаны; металлоцены. Наконец хиральность молекулы может быть связана со спиральной организацией молекулярной структуры. Молекула может заворачиваться либо в левую, либо в правую спираль. В этом случае говорят о спиральности (спиральный тип хиральности).

Для того чтобы определить конфигурацию молекулы, обладающей осью хиральности, необходимо ввести дополнительный пункт в правило последовательности: ближайшие к наблюдателю группы считаются старше удаленных от наблюдателя групп. Это дополнение необходимо сделать, так как для молекул с аксиальной хиральностью допустимо наличие одинаковых заместителей на противоположных концах оси. Применение этого правила к молекулам, изображенным на рис. 25, показано на рис. 27.

Рис. 27

Во всех случаях молекулы рассматриваются вдоль хиральной оси слева. При этом следует понимать, что если молекулы рассматриваются справа, то конфигурационный дескриптор останется тем же. Таким образом, пространственное расположение четырех опорных групп соответствует вершинам виртуального тетраэдра и может быть представлено с помощью соответствующих проекций (рис.27). Для определения соответствующего дескриптора пользуемся стандартными правилами R , S -номенклатуры. В случае бифенилов важно заметить, что заместители в кольце рассматриваются, начиная от центра (через который проходит ось хиральности) к перифирии, в нарушении стандартных правил последовательности. Так, для бифенила на рис. 25 правильная последовательность заместителей в правом кольце С-ОСН 3 >С-Н; атом хлора слишком удален, чтобы принимать его во внимание. Опорные атомы (те, по которым определяют конфигурационный символ) оказываются теми же самыми, если молекулу рассматривать справа. Иногда, чтобы отличить аксиальную хиральность от других типов, используют дескрипторы aR и aS (или R a и S a ), однако использование префикса «a » не носит обязательного характера.

Альтернативно, молекулы с осями хиральности можно рассматривать как спиральные, и их конфигурацию можно обозначать символами Р и М . При этом для определения конфигурации рассматриваются только заместители с высшим приоритетом как в передней, так и задней (удаленной от наблюдателя) части структуры (заместители 1 и 3 на рис.27). Если переход от переднего заместителя 1 с высшим приоритетом к приоритетному заднему заместителю 3 осуществляется по часовой стрелке, то это конфигурация Р ; если против часовой стрелки, - это конфигурация М .

На рис. 26 показаны молекулы с плоскостями хиральности . Дать определение плоскости хиральности не так легко, и оно не столь однозначно, как определение центра и оси хиральности. Это плоскость, которая содержит как можно больше атомов молекулы, но при этом не все. Фактически хиральность потому (и только потому), что по крайней мере один заместитель (чаще больше) не лежит в плоскости хиральности. Так, хиральной плоскостью анса-соединения А является плоскость бензольного кольца. В парациклофане В в качестве хиральной плоскости рассматривается наиболее замещенное (нижнее) кольцо. Для того чтобы определить дескриптор для планарно-хиральных молекул, на плоскость смотрят со стороны ближайшего к плоскости, но не лежащего в этой плоскости атома (если имеется два или более кандидата, то выбирается тот, который находится ближе к атому с высшим приоритетом согласно правилам последовательности). Этот атом, иногда называемый пробным или пилотным атомом, на рис.26 отмечен стрелкой. Тогда, если три последовательных атома (a, b, c) c наивысшим приоритетом образуют в хиральной плоскости ломаную линию, изгибающуюся по часовой стрелке, то конфигурация соединения pR (или R p ), а если ломаная линия изгибается против часовой стрелки, то дескриптор конфигурации pS (или S p ). Планарная хиральность, подобно аксиальной хиральности, может альтернативно рассматриваться как разновидность хиральности. Для того чтобы определить направление (конфигурацию) спирали, нужно рассматривать пилотный атом вместе с атомами a,b и c, как они определены выше. Отсюда видно, что pR -соединениям соответствует Р-, а pS - соединениям – М –спиральность.

Выбор редакции
В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...

Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...

Водорастворимые и жирорастворимые витамины по-разному усваиваются. Водорастворимые витамины — это весь ряд витаминов В-группы и...

Хлористый калий — это удобрительный состав, содержащий в себе много калия. Используют его в агротехнике с целью восполнения питательных...
Моча у не имеющего проблем со здоровьем человека обычно желтого цвета. Любое резкое изменение цвета должно вызывать беспокойство,...
Методический приём технологии критического мышления «зигзаг».Прием "Зигзаг" придуман для тех случаев, когда требуется в короткий срок...
Игра «Угадай, кто ты» — интересное и весёлое времяпровождение, как для больших, так и для маленьких компаний. Играя в неё, вы забудете...
Артиллерийские батареи, мощные системы заграждений и крупные силы врага. Скалистый мыс Крестовый казался неприступным. Но он был нужен...
Непреложным и обязательным правилом любой религии в воспитании человека всегда считалось развитие духовности и благожелательности....