Как найти действительную и мнимую полуось гиперболы. Гипербола определение свойства построение


Гипербола – это множество точек плоскости, разница расстояний которых от двух заданных точек, фокусов, есть постоянная величина и равна .

Аналогично эллипсу фокусы размещаем в точках , (см. рис. 1).

Рис. 1

Видно из рисунка, что могут быть случаи и title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> title="Rendered by QuickLaTeX.com" height="16" width="65" style="vertical-align: -4px;"> , тогда согласно определению

Известно, что в треугольнике разница двух сторон меньше третьей стороны, поэтому, например, с у нас получается:

Поднесём к квадрату обе части и после дальнейших преобразований найдём:

где . Уравнение гиперболы (1) – это каноническое уравнение гиперболы.

Гипербола симметрична относительно координатных осей, поэтому, как и для эллипса, достаточно построить её график в первой четверти, где:

Область значения для первой четверти .

При у нас есть одна из вершин гиперболы . Вторая вершина . Если , тогда из (1) – действительных корней нет. Говорят, что и – мнимые вершины гиперболы. Из соотношением получается, что при достаточно больших значениях есть место ближайшего равенства title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> title="Rendered by QuickLaTeX.com" height="27" width="296" style="vertical-align: -7px;"> . Поэтому прямая есть линией, расстояние между которой и соответствующей точкой гиперболы направляется к нулю при .

Форма и характеристики гиперболы

Исследуем уравнение (1) форму и расположение гиперболы.

  1. Переменные и входят в уравнение (1) в парных степенях. Поэтому, если точка принадлежит гиперболе, тогда и точки также принадлежат гиперболе. Значит, фигура симметрична относительно осей и , и точки , которая называется центром гиперболы.
  2. Найдём точки пересечения с осями координат. Подставив в уравнение (1) получим, что гипербола пересекает ось в точках . Положив получим уравнение , у которого нет решений. Значит, гипербола не пересекает ось . Точки называются вершинами гиперболы. Отрезок = и называется действительной осью гиперболы, а отрезок – мнимой осью гиперболы. Числа и называются соответственно действительной и мнимой полуосями гиперболы. Прямоугольник, созданный осями и называется главным прямоугольником гиперболы.
  3. С уравнения (1) получается, что , то есть . Это означает, что все точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и левая от прямой (левая ветвь гиперболы).
  4. Возьмём на гиперболе точку в первой четверти, то есть , а поэтому . Так как 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> 0" title="Rendered by QuickLaTeX.com" height="31" width="156" style="vertical-align: -12px;"> , при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция монотонно возрастает при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> . Аналогично, так как при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> , тогда функция выпуклая вверх при title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> title="Rendered by QuickLaTeX.com" height="12" width="51" style="vertical-align: 0px;"> .

Асимптоты гиперболы

Есть две асимптоты гиперболы. Найдём асимптоту к ветви гиперболы в первой четверти, а потом воспользуемся симметрией. Рассмотрим точку в первой четверти, то есть . В этом случае , , тогда асимптота имеет вид: , где

Значит, прямая – это асимптота функции . Поэтому в силу симметрии асимптотами гиперболы есть прямые .

За установленными характеристиками построим ветвь гиперболы, которая находится в первой четверти и воспользуемся симметрией:

Рис. 2

В случае, когда , то есть гипербола описывается уравнением . В этой гиперболе асимптоты, которые и есть биссектрисами координатных углов .

Примеры задач на построение гиперболы

Пример 1

Задача

Найти оси, вершины, фокусы, ексцентриситет и уравнения асимптот гиперболы. Построить гиперболу и её асимптоты.

Решение

Сведём уравнение гиперболы к каноническому виду:

Сравнивая данное уравнение с каноническим (1) находим , , . Вершины , фокусы и . Ексцентриситет ; асмптоты ; Строим параболу. (см. рис. 3)

Написать уравнение гиперболы:

Решение

Записав уравнение асимптоты в виде находим отношение полуосей гиперболы . По условию задачи следует, что . Поэтому Задачу свели к решению системы уравнений:

Подставляя во второе уравнение системы, у нас получится:

откуда . Теперь находим .

Следовательно, у гиперболы получается такое уравнение:

Ответ

.

Гипербола и её каноническое уравнение обновлено: Июнь 17, 2017 автором: Научные Статьи.Ру

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a) , меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними - фокусным расстоянием, середина O отрезка F_1F_2 - центром гиперболы, число 2a - длиной действительной оси гиперболы (соответственно, a - действительной полуосью гиперболы). Отрезки F_1M и F_2M , соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=\frac{c}{a} , где c=\sqrt{a^2+b^2} , называется эксцентриситетом гиперболы . Из определения (2a<2c) следует, что e>1 .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей гиперболе, имеем:

\left||\overrightarrow{F_1M}|-|\overrightarrow{F_2M}|\right|=2a.

Записывая это уравнение в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\,

где b=\sqrt{c^2-a^2} , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2\!\!\not{\phantom{|}}\,c от нее (рис.3.41,а). При a=0 , когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы ). Здесь F и d - один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\left(x-\frac{a^2}{c}\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~c^2-a^2=b^2 , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1 :

\frac{r_1}{\rho_1}=e \quad \Leftrightarrow \quad \sqrt{(x+c)^2+y^2}= e\left(x+\frac{a^2}{c} \right).

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2r\varphi (рис.3.41,б) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi} , где p=\frac{p^2}{a} - фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси - луч с началом в точке F_2 , принадлежащий прямой F_1F_2 , но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,\varphi) , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a . Выражаем расстояние между точками M(r,\varphi) и F_1(2c,\pi) (см. пункт 2 замечаний 2.8):

F_1M=\sqrt{(2c)^2+r^2-2\cdot(2c)^2\cdot r\cdot\cos(\varphi-\pi)}=\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2+4cr\cdot\cos\varphi+4c^2=4a^2+4ar+r^2 \quad \Leftrightarrow \quad a\left(1-\frac{c}{a}\cos\varphi\right)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=\frac{c}{a},~b^2=c^2-a^2,~p=\frac{b^2}{a} :

R=\frac{c^2-a^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( e>1 для гиперболы, 0\leqslant e<1 для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0 , находим абсциссы точек пересечения: x=\pm a . Следовательно, вершины имеют координаты (-a,0),\,(a,0) . Длина отрезка, соединяющего вершины, равна 2a . Этот отрезок называется действительной осью гиперболы, а число a - действительной полуосью гиперболы. Подставляя x=0 , получаем y=\pm ib . Длина отрезка оси ординат, соединяющего точки (0,-b),\,(0,b) , равна 2b . Этот отрезок называется мнимой осью гиперболы, а число b - мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при a=b ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox"y" (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y"=\frac{a^2}{2x"} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол \varphi=-\frac{\pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

\left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y",\\ y&=-\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y"\end{aligned}\right. \quad \Leftrightarrow \quad \left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot(x"+y"),\\ y&=\frac{\sqrt{2}}{2}\cdot(y"-x")\end{aligned}\right.

Подставляя эти выражения в уравнение \frac{x^2}{a^2}-\frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

\frac{\frac{1}{2}(x"+y")^2}{a^2}-\frac{\frac{1}{2}(y"-x")^2}{a^2}=1 \quad \Leftrightarrow \quad 2\cdot x"\cdot y"=a^2 \quad \Leftrightarrow \quad y"=\frac{a^2}{2\cdot x"}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе . то и точки M"(x,y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=\frac{p}{1-e\cos\varphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e , тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина \gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: \operatorname{tg}\frac{\gamma}{2}=\frac{b}{2} . Учитывая, что e=\frac{c}{a} и c^2=a^2+b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2+b^2}{a^2}=1+{\left(\frac{b}{a}\right)\!}^2=1+\operatorname{tg}^2\frac{\gamma}{2}.

Чем больше e , тем больше угол \gamma . Для равносторонней гиперболы (a=b) имеем e=\sqrt{2} и \gamma=\frac{\pi}{2} . Для e>\sqrt{2} угол \gamma тупой, а для 1

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O"(x_0,y_0) , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O"(x_0,y_0) .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

\begin{cases}x=a\cdot\operatorname{ch}t,\\y=b\cdot\operatorname{sh}t,\end{cases}t\in\mathbb{R},

где \operatorname{ch}t=\frac{e^t+e^{-t}}{2} - гиперболический косинус, a \operatorname{sh}t=\frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству \operatorname{ch}^2t-\operatorname{sh}^2t=1 .


Пример 3.21. Изобразить гиперболу \frac{x^2}{2^2}-\frac{y^2}{3^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - действительная полуось, b=3 - мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

\frac{4^2}{2^2}-\frac{y^2}{3^2}=1 \quad \Leftrightarrow \quad y^2=27 \quad \Leftrightarrow \quad y=\pm3\sqrt{3}.

Следовательно, точки с координатами (4;3\sqrt{3}) и (4;-3\sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2\cdot c=2\cdot\sqrt{a^2+b^2}=2\cdot\sqrt{2^2+3^2}=2\sqrt{13}

эксцентриситет e=\frac{c}{a}=\frac{\sqrt{13}}{2} ; фокальныи параметр p=\frac{b^2}{a}=\frac{3^2}{2}=4,\!5 . Составляем уравнения асимптот y=\pm\frac{b}{a}\,x , то есть y=\pm\frac{3}{2}\,x , и уравнения директрис: x=\pm\frac{a^2}{c}=\frac{4}{\sqrt{13}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Остальным же читателям предлагаю существенно пополнить свои школьные знания о параболе и гиперболе. Гипербола и парабола – это просто? …Не дождётесь =)

Гипербола и её каноническое уравнение

Общая структура изложения материала будет напоминать предыдущий параграф. Начнём с общего понятия гиперболы и задачи на её построение.

Каноническое уравнение гиперболы имеет вид , где – положительные действительные числа. Обратите внимание, что в отличие от эллипса , здесь не накладывается условие , то есть, значение «а» может быть и меньше значения «бэ».

Надо сказать, довольно неожиданно… уравнение «школьной» гиперболы и близко не напоминает каноническую запись. Но эта загадка нас ещё подождёт, а пока почешем затылок и вспомним, какими характерными особенностями обладает рассматриваемая кривая? Раскинем на экране своего воображения график функции ….

У гиперболы две симметричные ветви.

Неплохой прогресс! Данными свойствами обладает любая гипербола, и сейчас мы с неподдельным восхищением заглянем в декольте этой линии:

Пример 4

Построить гиперболу, заданную уравнением

Решение : на первом шаге приведём данное уравнение к каноническому виду . Пожалуйста, запомните типовой порядок действий. Справа необходимо получить «единицу», поэтому обе части исходного уравнения делим на 20:

Здесь можно сократить обе дроби, но оптимальнее сделать каждую из них трёхэтажной :

И только после этого провести сокращение:

Выделяем квадраты в знаменателях:

Почему преобразования лучше проводить именно так? Ведь дроби левой части можно сразу сократить и получить . Дело в том, что в рассматриваемом примере немного повезло: число 20 делится и на 4 и на 5. В общем случае такой номер не проходит. Рассмотрим, например, уравнение . Здесь с делимостью всё печальнее и без трёхэтажных дробей уже не обойтись:

Итак, воспользуемся плодом наших трудов – каноническим уравнением :

Как построить гиперболу?

Существует два подхода к построению гиперболы – геометрический и алгебраический.
С практической точки зрения вычерчивание с помощью циркуля... я бы даже сказал утопично, поэтому гораздо выгоднее вновь привлечь на помощь нехитрые расчёты.

Целесообразно придерживаться следующего алгоритма, сначала готовый чертёж, потом комментарии:

На практике часто встречается комбинация поворота на произвольный угол и параллельного переноса гиперболы. Данная ситуация рассматривается на уроке Приведение уравнения линии 2-го порядка к каноническому виду .

Парабола и её каноническое уравнение

Свершилось! Она самая. Готовая раскрыть немало тайн. Каноническое уравнение параболы имеет вид , где – действительное число. Нетрудно заметить, что в своём стандартном положении парабола «лежит на боку» и её вершина находится в начале координат. При этом функция задаёт верхнюю ветвь данной линии, а функция – нижнюю ветвь. Очевидно, что парабола симметрична относительно оси . Собственно, чего париться:

Пример 6

Построить параболу

Решение : вершина известна, найдём дополнительные точки. Уравнение определяет верхнюю дугу параболы, уравнение – нижнюю дугу.

В целях сократить запись вычисления проведём «под одной гребёнкой» :

Для компактной записи результаты можно было свести в таблицу.

Перед тем, как выполнить элементарный поточечный чертёж, сформулируем строгое

определение параболы:

Параболой называется множество всех точек плоскости, равноудалённых от данной точки и данной прямой , не проходящей через точку .

Точка называется фокусом параболы, прямая – директрисой (пишется с одной «эс») параболы. Константа «пэ» канонического уравнения называется фокальным параметром , который равен расстоянию от фокуса до директрисы. В данном случае . При этом фокус имеет координаты , а директриса задаётся уравнением .
В нашем примере :

Определение параболы понимается ещё проще, чем определения эллипса и гиперболы. Для любой точки параболы длина отрезка (расстояние от фокуса до точки) равна длине перпендикуляра (расстоянию от точки до директрисы):

Поздравляю! Многие из вас сегодня сделали самое настоящие открытие. Оказывается, гипербола и парабола вовсе не являются графиками «рядовых» функций, а имеют ярко выраженное геометрическое происхождение.

Очевидно, что при увеличении фокального параметра ветви графика будут «раздаваться» вверх и вниз, бесконечно близко приближаясь к оси . При уменьшении же значения «пэ» они начнут сжиматься и вытягиваться вдоль оси

Эксцентриситет любой параболы равен единице:

Поворот и параллельный перенос параболы

Парабола – одна из самых распространённых линий в математике, и строить её придётся действительно часто. Поэтому, пожалуйста, особенно внимательно отнестись к заключительному параграфу урока, где я разберу типовые варианты расположения данной кривой.

! Примечание : как и в случаях с предыдущими кривыми, корректнее говорить о повороте и параллельном переносе координатных осей, но автор ограничится упрощённым вариантом изложения, чтобы у читателя сложились элементарные представления о данных преобразованиях.

Занятие 10 . Кривые второго порядка.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Кривыми второго порядка на плоскости называются линии, неявное задание которых имеет вид:

где
- заданные вещественные числа,
- координаты точек кривой. Наиболее важными линиями среди кривых второго порядка являются эллипс, гипербола, парабола.

10.1. Эллипс. Каноническое уравнение. Полуоси, эксцентриситет, график.

Определение эллипса. Эллипсом называется плоская кривая, у которой сумма расстояний от двух фиксированных точек
плоскости до любой точки

(т.е.). Точки
называются фокусами эллипса.

Каноническое уравнение эллипса :
. (2)


(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
(рис.1). Эллипс (2) симметричен относительно осей координат и начала координат (центра эллипса). Постоянные
,
называютсяполуосями эллипса .

Если эллипс задан уравнением (2), то фокусы эллипса находятся так.

1) Сначала определяем, где лежат фокусы: фокусы лежат на той координатной оси, на которой расположены бóльшие полуоси.

2) Затем вычисляется фокусное расстояние (расстояние от фокусов до начала координат).

При
фокусы лежат на оси
;
;
.

При
фокусы лежат на оси
;
;
.

Эксцентриситетом эллипса называется величина:(при
);(при
).

У эллипса всегда
. Эксцентриситет служит характеристикой сжатия эллипса.

Если эллипс (2) переместить так, что центр эллипса попадет в точку

,
, то уравнение полученного эллипса имеет вид

.

10.2. Гипербола. Каноническое уравнение. Полуоси, эксцентриситет, асимптоты, график.

Определение гиперболы. Гиперболой называется плоская кривая, у которой абсолютная величина разности расстояний от двух фиксированных точек
плоскости до любой точки
этой кривой есть постоянная величина, независящая от точки
(т.е.). Точки
называются фокусами гиперболы.

Каноническое уравнение гиперболы :
или
. (3)

Такое уравнение получается, если координатная ось
(или ось
) проходит через фокусы
, а начало координат – точка- находится в центре отрезка
. Гиперболы (3) симметричны относительно осей координат и начала координат. Постоянные
,
называютсяполуосями гиперболы .

Фокусы гиперболы находятся так.

У гиперболы
фокусы лежат на оси
:
(рис. 2.а).

У гиперболы
фокусы лежат на оси
:
(рис. 2.б)

Здесь - фокусное расстояние (расстояние от фокусов до начала координат). Оно вычисляется по формуле:
.

Эксцентриситетом гиперболы называется величина:

(для
);(для
).

У гиперболы всегда
.

Асимптотами гипербол (3) являются две прямые:
. Обе ветви гиперболы неограниченно приближаются к асимптотам с ростом.

Построение графика гиперболы следует проводить так: сначала по полуосям
строим вспомогательный прямоугольник со сторонами, параллельными осям координат; затем через противоположные вершины этого прямоугольника проводим прямые, это – асимптоты гиперболы; наконец изображаем ветви гиперболы, они касаются середин соответствующих сторон вспомогательного прямоугольника и приближаются с ростомк асимптотам (рис. 2).

Если гиперболы (3) переместить так, что их центр попадет в точку
, а полуоси останутся параллельны осям
,
, то уравнение полученных гипербол запишутся в виде

,
.

10.3. Парабола. Каноническое уравнение. Параметр параболы, график.

Определение параболы. Параболой называется плоская кривая, у которой для любой точки
этой кривой расстояние от
до фиксированной точкиплоскости (называемой фокусом параболы) равно расстоянию от
до фиксированной прямой на плоскости
(называемой директрисой параболы).

Каноническое уравнение параболы :
, (4)

где - постоянная, называемаяпараметром параболы.

Точка
параболы (4) называется вершиной параболы. Ось
является осью симметрии. Фокус параболы (4) находится в точке
, уравнение директрисы
. Графики параболы (4) со значениями
и
приведены на рис. 3.а и 3.б соответственно.

Уравнение
также определяет параболу на плоскости
, у которой по сравнению с параболой (4), оси
,
поменялись местами.

Если параболу (4) переместить так, что ее вершина попадет в точку
, а ось симметрии останется параллельна оси
, то уравнение полученной параболы имеют вид

.

Перейдем к примерам.

Пример 1 . Кривая второго порядка задана уравнением
. Дать название этой кривой. Найти ее фокусы и эксцентриситет. Изобразить кривую и ее фокусы на плоскости
.

Решение. Данная кривая является эллипсом с центром в точке
и полуосями
. В этом легко убедиться, если провести замену
. Это преобразование означает переход от заданной декартовой системы координат
к новой декартовой системе координат
, у которой оси
параллельны осям
,
. Это преобразование координат называется сдвигом системы
в точку. В новой системе координат
уравнение кривой преобразуется в каноническое уравнение эллипса
, его график приведен на рис. 4.

Найдем фокусы.
, поэтому фокусы
эллипса расположены на оси
.. В системе координат
:
. Т.к.
, в старой системе координат
фокусы имеют координаты.

Пример 2 . Дать название кривой второго порядкаи привести ее график.

Решение. Выделим полные квадраты по слагаемым, содержащим переменные и.

Теперь, уравнение кривой можно переписать так:

Следовательно, заданная кривая является эллипсом с центром в точке
и полуосями
. Полученные сведения позволяют нарисовать его график.

Пример 3 . Дать название и привести график линии
.

Решение. . Это – каноническое уравнение эллипса с центром в точке
и полуосями
.

Поскольку,
, делаем заключение: заданное уравнение определяет на плоскости
нижнюю половину эллипса (рис. 5).

Пример 4 . Дать название кривой второго порядка
. Найти ее фокусы, эксцентриситет. Привести график этой кривой.

- каноническое уравнение гиперболы с полуосями
.

Фокусное расстояние.

Знак "минус" стоит перед слагаемым с , поэтому фокусы
гиперболы лежат на оси
:. Ветви гиперболы располагаются над и под осью
.

- эксцентриситет гиперболы.

Асимптоты гиперболы: .

Построение графика этой гиперболы осуществляется в соответствии с изложенным выше порядком действий: строим вспомогательный прямоугольник, проводим асимптоты гиперболы, рисуем ветви гиперболы (см. рис.2.б).

Пример 5 . Выяснить вид кривой, заданной уравнением
и построить ее график.

- гипербола с центром в точке
и полуосями.

Т.к. , заключаем: заданное уравнение определяет ту часть гиперболы, которая лежит Справа от прямой
. Гиперболу лучше нарисовать во вспомогательной системе координат
, полученной из системы координат
сдвигом
, а затем жирной линией выделить нужную часть гиперболы

Пример 6 . Выяснить вид кривойи нарисовать ее график.

Решение. Выделим полный квадрат по слагаемым с переменной :

Перепишем уравнение кривой.

Это – уравнение параболы с вершиной в точке
. Преобразованием сдвигауравнение параболы приводится к каноническому виду
, из которого видно, что- параметр параболы. Фокуспараболы в системе
имеет координаты
,, а в системе
(согласно преобразованию сдвига). График параболы приведен на рис. 7.

Домашнее задание .

1. Нарисовать эллипсы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках эллипсов места расположения их фокусов.

2. Нарисовать гиперболы, заданные уравнениями:
Найти их полуоси, фокусное расстояние, эксцентриситет и указать на графиках гипербол места расположения их фокусов. Написать уравнения асимптот данных гипербол.

3. Нарисовать параболы, заданные уравнениями:
. Найти их параметр, фокусное расстояние и указать на графиках парабол место расположения фокуса.

4. Уравнение
определяет часть кривой 2-го порядка. Найти каноническое уравнение этой кривой, записать ее название, построить ее график и выделить на нем ту часть кривой, которая отвечает исходному уравнению.

Презентация и урок на тему:
"Гипербола, определение, свойство функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронные учебные таблицы по геометрии. 7-9 классы
Электронные учебные таблицы по алгебре. 7-9 классы"

Гипербола, определение

Ребята, сегодня мы с вами изучим новую функцию и построим ее график.
Рассмотрим функцию: $y=\frac{k}{x}$, $k≠0$.
Коэффициент $k$ – может принимать любые действительные значения, кроме нуля. Для простоты начнем разбор функции со случая, когда $k=1$.
Построим график функции: $y=\frac{1}{x}$.
Как всегда начнем с построения таблицы. Правда в этот раз придется разделить нашу таблицу на две части. Рассмотрим случай, когда $x>0$.
Нам нужно отметить шесть точек с координатами $(x;y)$, которые приведены в таблице и соединить их линией.
Теперь посмотрим, что у нас получается при отрицательных х. Поступим тем же образом, отметим точки и соединим их линией. Два кусочка графика мы построили, давайте объединим их.

График функции $y=\frac{1}{x}$.
График такой функции называется "Гиперболой".

Свойства гиперболы

Согласитесь, график выглядит довольно-таки красиво, и он симметричен относительно начала координат. Если провести любую прямую, проходящую через начало координат, из первой в третью четверть, то она пересечет наш график в двух точках, которые будут одинаково отдалены от начала координат.
Гипербола состоит из двух, симметричных относительно начала координат, частей. Эти части называются, ветвями гиперболы.
Ветви гиперболы в одном направлении (влево и вправо) все больше и больше стремятся к оси абсцисс, но никогда не пересекут ее. В другом направлении (вверх и вниз) стремятся к оси ординат, но также никогда не пересекут ее (так как на ноль делить нельзя). В таких случаях, соответствующие линии называются асимптотами. График гиперболы имеет две асимптоты: ось х и ось у.

У гиперболы есть не только центр симметрии, но и ось симметрии. Ребята, проведите прямую $y=x$ и посмотрите, как разделился наш график. Можно заметить, что если часть, которая расположена выше прямой $y=x$, наложить на часть, которая располагается ниже, то они совпадут, это и означает симметричность относительно прямой.

Мы построили график функции $y=\frac{1}{x}$, но что будет в общем случае $y=\frac{k}{x}$, $k>0$.
Графики практически не будут отличаться. Будет получаться гипербола с теми же ветвями, только чем больше $k$, тем дальше будут удалены ветви от начала координат, а чем меньше $k$, тем ближе подходить к началу координат.

Например, график функции $y=\frac{10}{x}$ выглядит следующим образом. График стал "шире", отдалился от начала координат.
А как быть в случае отрицательных $k$? График функции $y=-f(x)$ симметричен графику $y=f(x)$ относительно оси абсцисс, нужно перевернуть его "вверх ногами".
Давайте воспользуемся этим свойством и построим график функции $y=-\frac{1}{x}$.

Обобщим полученные знания.
Графиком функции $y=\frac{k}{x}$, $k≠0$ является гипербола, расположенная в первой и третье (второй и четвертой) координатных четвертях, при $k>0$ ($k

Свойства функции $y=\frac{k}{x}$, $k>0$

1. Область определения: все числа, кроме $х=0$.
2. $y>0$ при $x>0$, и $y 3. Функция убывает на промежутках $(-∞;0)$ и $(0;+∞)$.



7. Область значений: $(-∞;0)U(0;+∞)$.

Свойства функции $y=\frac{k}{x}$, $k
1. Область определения: все числа кроме $х=0$.
2. $y>0$ при $x 0$.
3. Функция возрастает на промежутках $(-∞;0)$ и $(0;+∞)$.
4. Функция не ограничена ни сверху, ни снизу.
5. Наибольшего и наименьшего значений нет.
6. Функция непрерывна на промежутках $(-∞;0)U(0;+∞)$ и имеет разрыв в точке $х=0$.
7. Область значений: $(-∞;0)U(0;+∞)$.

Выбор редакции
Характеристика углеводов. Кроме неорганических веществ в состав клетки входят и органические вещества: белки, углеводы, липиды,...

План: Введение1 Сущность явления 2 Открытие броуновского движения 2.1 Наблюдение 3 Теория броуновского движения 3.1 Построение...

На всех этапах существования языка он неразрывно связан с обществом. Эта связь имеет двусторонний характер: язык не существует вне...

Технологии Новые идеи появляются каждый день. Одни из них остаются на бумаге, другие же получают зеленый свет - их тестируют и при...
Пояснительная записка Данное занятие было составлено и проведено к 69-летию победы, т. е., относится к лексической теме «День Победы»....
К сожалению, в школе нас не всегда этому учат. А ведь очень многих интересуют правила поведения в кругу друзей и в обществе малознакомых...
Одной из самых актуальных проблем для простых интернет-пользователей и владельцев сайтов / форумов является массовая рассылка . Со спамом...
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....
б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...