Какое движение называют криволинейным. Криволинейное


Эта тема будет посвящена более сложному виду движения – КРИВОЛИНЕЙНОМУ . Как несложно догадаться, криволинейным называется движение, траектория которого представляет собой кривую линию . И, поскольку это движение сложнее прямолинейного, то для его описания уже не хватает тех физических величин, которые были перечислены в предыдущей главе.

Для математического описания криволинейного движения имеются 2 группы величин: линейные и угловые.

ЛИНЕЙНЫЕ ВЕЛИЧИНЫ.

1. Перемещение . В разделе 1.1 мы не стали уточнять различие между понятием

Рис.1.3 пути (расстояния) и понятием перемещения,

поскольку в прямолинейном движении эти

различия не играют принципиальной роли, да и

Обозначаются эти величины одной и той же бук-

вой S . Но, имея дело с криволинейным движением,

этот вопрос нужно прояснить. Итак, что такое путь

(или расстояние)? – Это длина траектории

движения. То есть, если Вы отследите траекторию

движения тела и измерите ее (в метрах, километрах и т.д.), вы получите величину, которая называется путем (или расстоянием) S (см. рис.1.3). Таким образом, путь – это скалярная величина, которая характеризуется только числом.

Рис.1.4 А перемещение - это кратчайшее расстояние между

точкой начала пути и точкой конца пути. И, поскольку

перемещение имеет строгую направленность из начала

Пути в его конец, то оно является величиной векторной

и характеризуется не только численным значением, но и

направлением (рис.1.3). Нетрудно догадаться, что, если

тело совершает движение по замкнутой траектории, то к

моменту его возвращения в начальное положение перемещение будет равно нулю (см. рис.1.4).

2 . Линейная скорость . В разделе 1.1 мы давали определение этой величины, и оно остается в силе, хотя тогда мы не уточняли, что эта скорость линейная. Как же направлен вектор линейной скорости? Обратимся к рис.1.5. Здесь изображен фрагмент

криволинейной траектории тела. Любая кривая линия представляет собой соединение между собой дуг разных окружностей. На рис.1.5 изображены только две из них: окружность (О 1 , r 1) и окружность (О 2 , r 2). На момент прохождения тела по дуге данной окружности ее центр становится временным центром поворота с радиусом, равным радиусу этой окружности.

Вектор, проведенный из центра поворота в точку, где в данный момент находится тело, называется радиусом-вектором. На рис.1.5 радиусы-векторы представлены векторами и . Также на этом рисунке изображены и вектора линейной скорости: вектор линейной скорости всегда направлен по касательной к траектории в сторону движения. Следовательно, угол между вектором и радиусом-вектором, проведенным в данную точку траектории, всегда равен 90°. Если тело движется с постоянной линейной скоростью, то модуль вектора изменяться не будет, тогда как его направление все время меняется в зависимости от формы траектории. В случае, изображенном на рис.1.5, движение осуществляется с переменной линейной скоростью, поэтому у вектора изменяется модуль. Но, поскольку при криволинейном движении направление вектора изменяется всегда, то отсюда следует очень важный вывод:

при криволинейном движении всегда есть ускорение ! (Даже если движение осуществляется с постоянной линейной скоростью.) Причем, ускорение, о котором идет речь в данном случае, в дальнейшем мы будем называть линейным ускорением.

3 . Линейное ускорение . Напомню, что ускорение возникает тогда, когда изменяется скорость. Соответственно, линейное ускорение появляется в случае изменения линейной скорости. А линейная скорость при криволинейном движении может изменяться кок по модулю, так и по направлению. Таким образом, полное линейное ускорение раскладывается на две составляющие, одна из которых влияет на направление вектора , а вторая на его модуль. Рассмотрим эти ускорения (рис. 1.6). На этом рисунке

рис. 1.6

О

изображено тело, движущееся по круговой траектории с центром поворота в точке О.

Ускорение, которое изменяет направление вектора , называется нормальным и обозначается . Нормальным оно называется потому, что направлено перпендикулярно (нормально) к касательной, т.е. вдоль радиуса к центру поворота . Его еще называют центростремительным ускорением.

Ускорение, которое изменяет модуль вектора , называется тангенциальным и обозначается . Оно лежит на касательной и может быть направлено как в сторону направления вектора , так и противоположно ему :

Если линейная скорость увеличивается, то > 0 и их вектора сонаправлены;

Если линейная скорость уменьшается, то < 0 и их вектора противоположно

направлены.

Таким образом, эти два ускорения всегда образуют между собой прямой угол (90º) и являются составляющими полного линейного ускорения , т.е. полное линейное ускорение есть векторная сумма нормального и тангенциального ускорения:

Замечу, что в данном случае речь идет именно о векторной сумме, но ни в коем случае не о скалярной. Чтобы найти численное значение , зная и , необходимо воспользоваться теоремой Пифагора (квадрат гипотенузы треугольника численно равен сумме квадратов катетов этого треугольника):

(1.8).

Отсюда следует:

(1.9).

По каким формулам рассчитывать и рассмотрим чуть позже.

УГЛОВЫЕ ВЕЛИЧИНЫ.

1 . Угол поворота φ . При криволинейном движении тело не только проходит какой-то путь и совершает какое-то перемещение, но и поворачивается на определенный угол (см. рис. 1.7(а)). Поэтому для описания такого движения вводится величина, которая называется углом поворота, обозначается греческой буквой φ (читается «фи»). В системе СИ угол поворота измеряется в радианах (обозначается «рад»). Напомню, что один полный оборот равен 2π радианам, а число π есть константа: π ≈ 3,14. на рис. 1.7(а) изображена траектория движения тела по окружности радиуса r с цетром в точке О. Сам угол поворота – это угол между радиус-векторами тела в некоторые моменты времени.

2 . Угловая скорость ω это величина, показывающая, как изменяется угол поворота за единицу времени. (ω – греческая буква, читается «омега».) На рис. 1.7(б) изображено положение материальной точки, движущейся по круговой траектории с центром в точке О, через промежутки времени Δt . Если углы, на которые поворачивается тело в течение этих промежутков, одинаковы, то угловая скорость постоянна, и это движение можно считать равномерным. А если углы поворота разные – то движение неравномерное. И, поскольку угловая скорость показывает, на сколько радиан

повернулось тело за одну секунду, то ее единица измерения – радиан в секунду

(обозначается «рад/с »).

рис. 1.7

а). б). Δt

Δt

Δt

О φ О Δt

3 . Угловое ускорение ε – это величина, показывающая, как изменяется за единицу времени. И, поскольку угловое ускорение ε появляется тогда, когда изменяется, угловая скорость ω , то можно сделать вывод, что угловое ускорение имеет место только в случае неравномерного криволинейного движения. Единица измерения углового ускорения – «рад/с 2 » (радиан за секунду в квадрате).

Таким образом, таблицу 1.1 можно дополнить еще тремя величинами:

Табл.1.2

физическая величина определение величины обозначение величины единица измерения
1. путь это расстояние, которое преодолевает тело в процессе своего движения S м (метр)
2. скорость это расстояние, которое проходит тело за единицу времени (например, за 1 секунду) υ м/с (метр в секунду)
3. ускорение это величина, на которую изменяется скорость тела за единицу времени a м/с 2 (метр за секунду в квадрате)
4. время t с (секунда)
5. угол поворота это угол, на который поворачивается тело в процессе криволинейного движения φ рад (радиан)
6. угловая скорость это угол, на который поворачивается тело за единицу времени (например, за 1 сек.) ω рад/с (радиан в секунду)
7. угловое ускорение это величина, на которую изменяется угловая скорость за единицу времени ε рад/с 2 (радиан за секунду в квадрате)

Теперь можно перейти непосредственно к рассмотрению всех видов криволинейного движения, а их всего лишь три.

Рассматривая криволинейное движение тела, мы увидим, что его скорость в разные моменты различна. Даже в том случае, когда модуль скорости не меняется, все же имеет место изменение направления скорости. В общем случае меняются и модуль и направление скорости.

Таким образом, при криволинейном движении скорость непрерывно изменяется, так что это движение происходит с ускорением. Для определения этого ускорения (по модулю и направлению) требуется найти изменение скорости как вектора, т. е. найти приращение модуля скорости и изменение ее направления.

Рис. 49. Изменение скорости при криволинейном движении

Пусть, например, точка, двигаясь криволинейно (рис. 49), имела в некоторый момент скорость а через малый промежуток времени - скорость . Приращение скорости есть разность между векторами и . Так как эти векторы имеют различное направление, то нужно взять их векторную разность. Приращение скорости выразится вектором , изображаемым стороной параллелограмма с диагональю и другой стороной . Ускорением называется отношение приращения скорости к промежутку времени , за который это приращение произошло. Значит, ускорение

По направлению совпадает с вектором .

Выбирая достаточно малым, придем к понятию мгновенного ускорения (ср. § 16); при произвольном вектор будет представлять среднее ускорение за промежуток времени .

Направление ускорения при криволинейном движении не совпадает с направлением скорости, в то время как для прямолинейного движения эти направления совпадают (или противоположны). Чтобы найти направление ускорения при криволинейном движении, достаточно сопоставить направления скоростей в двух близких точках траектории. Так как скорости направлены по касательным к траектории, то по виду самой траектории можно сделать заключение, в какую сторону от траектории направлено ускорение. Действительно, так как разность скоростей в двух близких точках траектории всегда направлена в ту сторону, куда искривляется траектория, то, значит, и ускорение всегда направлено в сторону вогнутости траектории. Например, когда шарик катится по изогнутому желобу (рис. 50), его ускорение на участках и направлено так, как показывают стрелки, причем это не зависит от того, катится шарик от к или в обратном направлении.

Рис. 50. Ускорения при криволинейном движении всегда направлены в сторону вогнутости траектории

Рис. 51. К выводу формулы для центростремительного ускорения

Рассмотрим равномерное движение точки по криволинейной траектории. Мы уже знаем, что это - ускоренное движение. Найдем ускорение. Для этого достаточно рассмотреть ускорение для частного случая равномерного движения по окружности. Возьмем два близких положения и движущейся точки, разделенных малым промежутком времени (рис. 51, а). Скорости движущейся точки в и равны по модулю, но различны по направлению. Найдем разность этих скоростей, пользуясь правилом треугольника (рис. 51, б). Треугольники и подобны, как равнобедренные треугольники с равными углами при вершине. Длину стороны , изображающей приращение скорости за промежуток времени , можно положить равной , где - модуль искомого ускорения. Сходственная ей сторона есть хорда дуги ; вследствие малости дуги длина ее хорды может быть приближенно принята равной длине дуги, т.е. . Далее, ; , где - радиус траектории. Из подобия треугольников следует, что отношения сходственных сторон в них равны:

откуда находим модуль искомого ускорения:

Направление ускорения перпендикулярно к хорде . Для достаточно малых промежутков времени можно считать, что касательная к дуге практически совпадает с ее хордой. Значит, ускорение можно считать направленным перпендикулярно (нормально) к касательной к траектории, т. е. по радиусу к центру окружности. Поэтому такое ускорение называют нормальным или центростремительным ускорением.

Если траектория - не окружность, а произвольная кривая линия, то в формуле (27.1) следует взять радиус окружности, ближе всего подходящей к кривой в данной точке. Направление нормального ускорения и в этом случае будет перпендикулярно к касательной к траектории в данной точке. Если при криволинейном движении ускорение постоянно по модулю и направлению, его можно найти как отношение приращения скорости к промежутку времени, за который это приращение произошло, каков бы ни был этот промежуток времени. Значит, в этом случае ускорение можно найти по формуле

аналогичной формуле (17.1) для прямолинейного движения с постоянным ускорением. Здесь - скорость тела в начальный момент, a - скорость в момент времени .

Мы знаем, что при прямолинейном движении направление вектора скорости всегда совпадает с направлением перемещения. Что можно сказать о направлении скорости и перемещения при криволинейном движении? Чтобы ответить на этот вопрос, мы воспользуемся тем же приемом, которым пользовались в предыдущей главе при изучении мгновенной скорости прямолинейного движения.

На рисунке 56 представлена некоторая криволинейная траектория. Допустим, что тело движется по ней из точки А в точку В.

При этом пройденный телом путь - это дуга А В, а его перемещение это вектор Конечно, нельзя считать, что скорость тела во время движения направлена вдоль вектора перемещения. Проведем между точками А и В ряд хорд (рис. 57) и представим себе, что движение тела происходит именно по этим хордам. На каждой из них тело движется прямолинейно и вектор скорости направлен вдоль хорды.

Сделаем теперь наши прямолинейные участки (хорды) более короткими (рис. 58). По-прежнему на каждом из них вектор скорости направлен вдоль хорды. Но видно, что ломаная линия на рисунке 58 уже более похожа на плавную кривую.

Ясно поэтому, что, продолжая уменьшать длину прямолинейных участков, мы их как бы стянем в точки и ломаная линия превратится в плавную кривую. Скорость же в каждой точке этой кривой будет направлена но касательной к кривой в этой точке (рис. 59).

Скорость движения тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

В том, что скорость точки при криволинейном движении действительно направлена по касательной, убеждает нас, например, наблюдение за работой гочнла (рис. 60). Если прижать к вращающемуся точильному камню концы стального прутка, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой

они обладали в момент отрыва от камня. Хорошо видно, что направление вылета искр всегда совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной к окружности движутся и брызги от колес буксующего автомобиля (рис. 61).

Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различные направления, как это показано на рисунке 62. Модуль же скорости может быть во всех точках траектории одинаковым (см. рис. 62) или изменяться от точки к точке, от одного момента времени к другому (рис. 63).

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное . С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Для начала определимся, какие принципиальные отличия есть у криволинейного движения (рис. 1) относительно прямолинейного и к чему эти отличия приводят.

Рис. 1. Траектория криволинейного движения

Поговорим о том, как удобно описывать движение тела при криволинейном движении.

Можно разбить движение на отдельные участки, на каждом из которых движение можно считать прямолинейным (рис. 2).

Рис. 2. Разбиение криволинейного движения на участки прямолинейного движения

Однако более удобным является следующий подход. Мы представим это движение как совокупность нескольких движений по дугам окружностей (рис. 3). Обратите внимание, что таких разбиений меньше, чем в предыдущем случае, кроме того, движение по окружности является криволинейным. К тому же примеры движения по окружности в природе встречается очень часто. Из этого можно сделать вывод:

Для того чтобы описывать криволинейное движение, нужно научиться описывать движение по окружности, а потом произвольное движение представлять в виде совокупностей движений по дугам окружностей.

Рис. 3. Разбиение криволинейного движения на движения по дугам окружностей

Итак, начнем изучение криволинейного движения с изучения равномерного движения по окружности. Давайте разберемся, каковы принципиальные отличия криволинейного движения от прямолинейного. Для начала вспомним, что в девятом классе мы изучили тот факт, что скорость тела при движении по окружности направлена по касательной к траектории (рис. 4). Кстати, этот факт вы можете пронаблюдать на опыте, если посмотрите, как движутся искры при использовании точильного камня.

Рассмотрим движение тела по дуге окружности (рис. 5).

Рис. 5. Скорость тела при движении по окружности

Обратите внимание, что в данном случае модуль скорости тела в точке равен модулю скорости тела в точке :

Однако вектор не равен вектору . Итак, у нас появляется вектор разности скоростей (рис. 6):

Рис. 6. Вектор разности скоростей

Причем изменение скорости произошло через некоторое время . Таким образом, мы получаем знакомую комбинацию:

Это не что иное, как изменение скорости за промежуток времени, или ускорение тела. Можно сделать очень важный вывод:

Движение по криволинейной траектории является ускоренным. Природа этого ускорения – непрерывное изменение направление вектора скорости.

Еще раз отметим, что, даже если говорится, что тело равномерно движется по окружности, имеется в виду, что модуль скорости тела не изменяется. Однако такое движение всегда является ускоренным, поскольку изменяется направление скорости.

В девятом классе вы изучали, чему равно такое ускорение и как оно направлено (рис. 7). Центростремительное ускорение всегда направлено к центру окружности, по которой движется тело.

Рис. 7. Центростремительное ускорение

Модуль центростремительного ускорения может быть рассчитан по формуле:

Переходим к описанию равномерного движения тела по окружности. Договоримся, что скорость , которой вы пользовались по время описания поступательного движения, теперь будет называться линейной скоростью. И под линейной скоростью мы будем понимать мгновенную скорость в точке траектории вращающегося тела.

Рис. 8. Движение точек диска

Рассмотрим диск, который для определенности вращается по часовой стрелке. На его радиусе отметим две точки и (рис. 8). Рассмотрим их движение. За некоторое время эти точки переместятся по дугам окружности и станут точками и . Очевидно, что точка совершила большее перемещение, чем точка . Из этого можно сделать вывод, что чем дальше от оси вращения находится точка, тем с большей линейной скоростью она движется

Однако если внимательно посмотреть на точки и , можно сказать, что неизменным остался угол , на который они повернулись относительно оси вращения . Именно угловые характеристики мы и будем использовать для описания движения по окружности. Отметим, что для описания движения по окружности можно использовать угловые характеристики.

Начнем рассмотрение движения по окружности с самого простого случая – равномерного движения по окружности. Напомним, что равномерным поступательным движением называется движение, при котором за любые равные промежутки времени тело совершает одинаковые перемещения. По аналогии можно дать определение равномерного движения по окружности.

Равномерным движением по окружности называется движение, при котором за любые равные промежутки времени тело поворачивается на одинаковые углы.

Аналогично понятию линейной скорости вводится понятие угловой скорости.

Угловой скоростью равномерного движения ( называется физическая величина, равная отношению угла, на который повернулось тело, ко времени, за которое произошел этот поворот.

В физике чаще всего используется радианная мера угла. Например, угол в равен радиан. Измеряется угловая скорость в радианах в секунду:

Найдем связь между угловой скоростью вращения точки и линейной скоростью этой точки.

Рис. 9. Связь между угловой и линейной скоростью

Точка проходит при вращении дугу длиной , поворачиваясь при этом на угол . Из определения радианной меры угла можно записать:

Разделим левую и правую части равенства на промежуток времени , за который было совершено перемещение, затем воспользуемся определением угловой и линейной скоростей:

Обратим внимание, что чем дальше точка находится от оси вращения, тем выше ее линейная скорость. А точки, расположенные на самой оси вращения, неподвижны. Примером этого может служить карусель: чем ближе вы находитесь к центру карусели, тем легче вам на ней удержаться.

Такая зависимость линейной и угловой скоростей используется в геостационарных спутниках (спутники, которые всегда находятся над одной и той же точкой земной поверхности). Благодаря таким спутникам мы имеем возможность получать телевизионные сигналы.

Вспомним, что ранее мы вводили понятия периода и частоты вращения.

Период вращения – время одного полного оборота. Период вращения обозначается буквой и измеряется в секундах в СИ:

Частота вращения – физическая величина, равная количеству оборотов, которое тело совершает за единицу времени.

Частота обозначается буквой и измеряется в обратных секундах:

Они связаны соотношением:

Существует связь между угловой скоростью и частотой вращения тела. Если вспомнить, что полный оборот равен , легко увидеть, что угловая скорость:

Подставляя эти выражения в зависимость между угловой и линейной скоростью, можно получить зависимость линейной скорости от периода или частоты:

Запишем также связь между центростремительным ускорением и этими величинами:

Таким образом, мы знаем связь между всеми характеристиками равномерного движения по окружности.

Подытожим. На этом уроке мы начали описывать криволинейное движение. Мы поняли, каким образом можно связать криволинейное движение с движением по окружности. Движение по окружности всегда является ускоренным, а наличие ускорения обуславливает тот факт, что скорость всегда меняет свое направление. Такое ускорение называется центростремительным. Наконец, мы вспомнили некоторые характеристики движения по окружности (линейную скорость, угловую скорость, период и частоту вращения) и нашли соотношения между ними.

Список литературы

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А.П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О.Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А.В. Перышкин, В.В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
  1. Аyp.ru ().
  2. Википедия ().

Домашнее задание

Решив задачи к данному уроку, вы сможете подготовиться к вопросам 1 ГИА и вопросам А1, А2 ЕГЭ.

  1. Задачи 92, 94, 98, 106, 110 - сб. задач А.П. Рымкевич, изд. 10
  2. Вычислите угловую скорость движения минутной, секундной и часовой стрелок часов. Вычислите центростремительное ускорение, действующее на кончики этих стрелок, если радиус каждой из них равен одному метру.

При криволинейном движении у вектора скорости изменяется направление. При этом может меняться и его модуль, т. е. длина. В этом случае вектор ускорения раскладывается на две составляющие: касательную к траектории и перпендикулярную к траектории (рис. 10). Составляющая называется тангенциальным (касательным) ускорением, составляющая –нормальным (центростремительным) ускорением.

Ускорение при криволинейном движении

Тангенциальное ускорение характеризует быстроту изменения линейной скорости, а нормальное ускорение характеризует быстроту изменения направления движения.

Полное ускорение равно векторной сумме тангенциального и нормального ускорений:

(15)

Модуль полного ускорения равен:

.

Рассмотрим равномерное движение точки по окружности. При этом и . Пусть в рассматриваемый момент времени t точка находится в положении 1 (рис. 11). Спустя время Δt точка окажется в положении 2, пройдя путь Δs , равный дуге 1-2. При этом скорость точки v получает приращение Δv , в результате чего вектор скорости, оставаясь неизменным по величине, повернется на угол Δφ , совпадающий по величине с центральным углом, опирающимся на дугу длиной Δs :

(16)

где R-радиус окружности, по которой движется точка. Найдем приращение вектора скорости Для этого перенесем вектор так, чтобы его начало совпадало с началом вектора . Тогда вектор изобразится отрезком, проведенным из конца вектора в конец вектора . Этот отрезок служит основанием равнобедренного треугольника со сторонами и и углом Δφ при вершине. Если угол Δφ невелик (что выполняется для малых Δt), для сторон этого треугольника можно приближенно написать:

.

Подставляя сюда Δφ из (16), получаем выражение для модуля вектора :

.

Разделив обе части уравнения на Δt и сделав предельный переход, получим величину центростремительного ускорения:

Здесь величины v и R постоянные, поэтому их можно вынести за знак предела. Предел отношения – это модуль скорости Его также называют линейной скоростью.

Радиус кривизны

Радиус окружности R называется радиусом кривизны траектории. Величина, обратная R, называется кривизной траектории:

.

где R - радиус рассматриваемой окружности. Если α есть центральный угол, соответствующий дуге окружности s, то, как известно, между R, α и s имеет место соотношение:

s = Rα . (18)

Понятие радиуса кривизны применимо не только к окружности, но и любой кривой линии. Радиус кривизны (или обратная ему величина – кривизна) характеризует степень изогнутости линии. Чем меньше радиус кривизны (соответственно, чем больше кривизна), тем сильнее изогнута линия. Рассмотрим это понятие подробнее.


Кругом кривизны плоской линии в некоторой точке A называется предельное положение окружности, проходящей через точку А и две другие точки В 1 и В 2 при их бесконечном приближении к точке А (на рис. 12 кривая проведена сплошной линией, а круг кривизны - пунктирной). Радиус круга кривизны дает радиус кривизны рассматриваемой кривой в точке A, а центр этого круга - центр кривизны кривой для той же точки А.

Проведем в точках B 1 и В 2 касательные B 1 D и В 2 Е к окружности, проходящей через точки В 1 , А и B 2 . Нормали к этим касательным B 1 С и В 2 С представят собой радиусы R окружности и пересекутся в ее центре С. Введем угол Δα между нормалями В1С и В 2 С; очевидно, он равен углу между касательными В 1 D и В 2 E. Обозначим участок кривой между точками B 1 и В 2 как Δs. Тогда по формуле (18):

.

Круг кривизны плоской кривой линии

Определение кривизны плоской кривой в разных точках

На рис. 13 изображены круги кривизны плоской линии в разных точках. В точке A 1 , где кривая является более пологой, радиус кривизны больше, чем в точке A 2 , соответственно, кривизна линии в точке A 1 будет меньше, чем в точке A 2 . В точке A 3 кривая является еще более пологой, чем в точках A 1 и A 2 , поэтому радиус кривизны в этой точке будет больше, а кривизна меньше. Кроме того, круг кривизны в точке A 3 лежит по другую сторону кривой. Поэтому величине кривизны в этой точке приписывают знак, противоположный знаку кривизны в точках A 1 и A 2: если кривизну в точках A 1 и A 2 будем считать положительной, то кривизна в точке A 3 будет отрицательной.

Выбор редакции
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....

б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...

К огромному сожалению, такое явление, как повышенная нервная возбудимость, стало на сегодняшний день нормой. Эта проблема встречается как...

В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...
Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...
Водорастворимые и жирорастворимые витамины по-разному усваиваются. Водорастворимые витамины — это весь ряд витаминов В-группы и...
Хлористый калий — это удобрительный состав, содержащий в себе много калия. Используют его в агротехнике с целью восполнения питательных...
Моча у не имеющего проблем со здоровьем человека обычно желтого цвета. Любое резкое изменение цвета должно вызывать беспокойство,...
Методический приём технологии критического мышления «зигзаг».Прием "Зигзаг" придуман для тех случаев, когда требуется в короткий срок...