Применение алканов алкенов алкинов. Физические свойства алкенов, применение, способы получения. Наименование алкинов и их характеристика


ОПРЕДЕЛЕНИЕ

Алкены — непредельные углеводороды, молекулы которых содержат одну двойную связь; в названии алкенов присутствует суффикс –ен или -илен.

Общая формула гомологического ряда алкенов (табл. 2) – C n H 2n

Таблица 2. Гомологический ряд алкенов.

Углеводородные радикалы, образованные от алкенов: -CH = CH 2 – винил и –СН 2 -СН = СН 2 – аллил.

Для алкенов, начиная с бутена, характерна изомерия углеродного скелета:

СН 2 -С(СН 3)-СН 3 (2-метилпропен-1)

и положения двойной связи:

CH 2 = CH-CH 2 -CH 3 (бутен-1)

CH 3 -C = CH-CH 3 (бутен-2)

Для алкенов, начиная с бутена-2, характерна геометрическая (цис-транс) изомерия (рис. 1).

Рис. 1. Геометрические изомеры бутена-2.

Для алкенов, начиная с пропена, характерна межклассовая изомерия с циклоалканами. Так, составу C 4 H 8 отвечают вещества класса алкенов и циклоалканов – бутен-1(2) и циклобутан.

Атомы углерода в молекулах алкенов находятся в sp 2 -гибридизациии: 3σ-связи располагаются в одной плоскости под углом 120 друг к другу, а π-связь образована p-электронами соседних атомов углерода. Двойная связь является сочетанием σ- и π-связей.

Химические свойства алкенов

Большинство химических реакций алкенов протекают по механизму электрофильного присоединения:

— гидрогалогенирование – взаимодействие алкенов с галогенводородами (HCl, HBr), протекающее по правилу Марковникова (при присоединении полярных молекул типа НХ к несимметричным алкенам водород присоединяется к более гидрированному атому углерода при двойной связи)

CH 3 -CH = CH 2 + HCl = CH 3 -CHCl-CH 3

— гидратация — взаимодействие алкенов с водой в присутствии минеральных кислот (серной, фосфорной) с образованием спиртов, протекающее по правилу Марковникова

CH 3 -C(CH 3) = CH 2 + H 2 O = CH 3 -C(CH 3)OH-CH 3

— галогенирование — взаимодействие алкенов с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды

CH 2 = CH 2 + Br 2 = BrCH 2 -CH 2 Br

При нагревании смеси алкена с галогеном до 500С возможно замещение атома водорода алкена по радикальному механизму:

CH 3 -CH = CH 2 + Cl 2 = Cl-CH 2 -CH = CH 2 + HCl

По радикальному механизму протекает реакция гидрирования алкенов. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3

Алкены способны окисляться с образованием различных продуктов, состав которых зависит от условий проведения реакции окисления. Так, при окислении в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомных спиртов:

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH

При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием кетоны, карбоновых кислот или углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O

Алкены вступают в реакции полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация может быть вызвана нагреванием, сверхвысоким давлением, облучением, действием свободных радикалов или катализаторов. Так, полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n —

Физические свойства алкенов

При обычных условиях С 2 -С 4 – газы, С 5 -С 17 – жидкости, начиная с С 18 – твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

Получение алкенов

Основные способы получения алкенов:

— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH 3 -CH 2 -CHBr-CH 3 + KOH = CH 3 -CH = CH-CH 3 + KBr + H 2 O

— дегалогенирование дигалогенпроизводных алканов под действием активных металлов

CH 3 -CHCl-CHCl-CH 3 + Zn = ZnCl 2 + CH 3 -CH = CH-CH 3

— дегидратация спиртов при их нагревании с серной кислотой (t >150 C) или пропускании паров спирта над катализатором

CH 3 -CH(OH)- CH 3 = CH 3 -CH = CH 2 + H 2 O

— дегидрирование алканов при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH 3 -CH 2 — CH 3 = CH 3 -CH = CH 2 + H 2

Алкены применяются в качестве исходных продуктов в производстве полимерных материалов (пластмасс, каучуков, пленок) и других органических веществ.

Примеры решения задач

ПРИМЕР 1

Задание Установите молекулярную формулу алкена, если известно, что одно и тоже количество его, взаимодействуя с галогенами, образует, соответственно, или 56,5 г дихлорпроизводного или 101 г дибромпроизводного.
Решение Химические свойства алкенов определяются их способностью присоединять вещества по механизму электрофильного присоединения, при этом двойная связь превращается в одинарную:

СnH 2 n + Cl 2 → CnH 2 nCl 2

CnH 2 n + Br 2 → CnH 2 nBr 2

Масса алкена, вступившего в реакцию одна и та же, значит в реакции участвует одинаковое количество моль алкена. Выразим количество моль углеводорода, если молярная масса дихлорпроизводного 12n+2n+71, молярная масса дибромпроизводного (12n+2n+160):

m(CnH 2 nCl 2) \ (12n+2n+71) = m(СnH 2 nBr 2) \ (12n+2n+160)

56.5 \ (12n+2n+71) = 101 \ (12n+2n+160)

Следовательно, алкен имеет формулу C 3 H 6 – это пропен.

Ответ Формула алкена C 3 H 6 – это пропен

ПРИМЕР 2

Задание Осуществите ряд превращений этан → этен → этанол → этен → хлорэтан → бутан
Решение Для получения этена из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании:

С 2 H 6 →C 2 H 4 + H 2

Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной):

С 2 H 4 + H 2 O = C 2 H 5 OH

Для получения этена из этанола используют реакцию дегидротации:

C 2 H 5 OH →(t, H 2 SO 4) → C 2 H 4 + H 2 O

Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования:

С 2 H 4 + HCl → C 2 H 5 Cl

Для получения бутана из хлорэтана используют реакцию Вюрца:

2C 2 H 5 Cl +2Na → C 4 H 10 + 2NaCl

Горят.

1. Горение на воздухе

2. Окисление водным раствором перманганата (реакция Вагнера)

В нейтральной среде получается коричневый оксид марганца (IV), а по двойной связи органического вещества присоединяются две ОН-группы:

Слева - алкен с перманганатом калия, справа - алкан. Органический слой (сверху) не смешивается с водным (снизу). Справа окраска перманганата не изменилась. Рис. 1.

Рис. 1. Реакция Вагнера

3. Окисление подкисленным раствором перманганата

В кислой среде раствор обесцвечивается: Мn +7 восстанавливается до Mn +2 . Обесцвечивание подкисленного раствора перманганата калия - качественная реакция на непредельные соединения .

5СН 2 =СН 2 + 12KMnO 4 + 18H 2 SO 4 = 12MnSO 4 + 10CO 2 + 6K 2 SO 4 + 28H 2 O.

Зависимость продуктов окисления от строения алкена:

Радикальное замещение в алкенах

Пропен и хлор при высокой температуре: 400-500 о С (условия, благоприятствующие радикальным реакциям) дают продукт не присоединения, а замещения.

В промышленности алкены получают крекингом или дегидрированием алканов нефти.

Лабораторные способы получения алкенов основаны на реакциях отщепления.

1. Дегалогенирование

Реакция дигалогеналканов, в молекулах которых атомы галогенов расположены у соседних атомов углерода, с магнием или цинком приводит к образованию двойной связи:

СН 2 Сl-CН 2 Сl + Zn → CH 2 =CH 2 + ZnCl 2

2. Дегидрогалогенирование

При взаимодействии галогеналканов с горячим спиртовым раствором щелочи отщепляется молекула галогеноводорода и образуется алкен:

СН 3 -СН 2 -СНCl-СН 3 + КОН спирт. CH 3 -CH=CH-CH 3 + KCl + H 2 O

3. Дегидратация

Нагревание спиртов с концентрированной серной или фосфорной кислотой приводит к отщеплению воды и образованию алкена.

Реакции отщепления несимметричных галогеналканов и спиртов часто протекают в соответствии с правилом Зайцева : Атом водорода преимущественно отщепляется от того из атомов С, который связан с наименьшим числом атомов Н.

Правило Зайцева, как и правило Марковникова, можно объяснить, сравнивая устойчивость промежуточных частиц, которые образуются в реакции.

Этилен, пропен и бутены - исходные вещества для нефтехимического синтеза, прежде всего для получения пластиков.

При присоединении хлора к алкенам получаются хлоропроизводные.

СН 2 =СН-СН 3 + Cl 2 CH 2 Cl - CHCl - CH 3 (1,2-дихлорпропан)

Но еще в 1884 году русский ученый Львов М.Д. (рис. 2) провел реакцию хлорирования пропена в более жестких условиях, при t = 400 0 С. В результате получился продукт не присоединения хлора, а замещения.

СН 2 =СН-СН 3 + Cl 2 СН 2 =СН-СН 2 Cl + HCl

Рис. 2. Русский ученый М.Д. Львов

Взаимодействие одних и тех же веществ при разных условиях приводят к разным результатам. Эта реакция широко используется для получения глицерина. Иногда этилен используют в овощехранилищах для ускорения созревания плодов.

Подведение итога урока

На этом уроке вы рассмотрели тему «Алкены. Химические свойства - 2. Получение и применение алкенов». В ходе занятия вы смогли углубить свои знания об алкенах, узнали о химических свойствах алкенов, а также об особенностях получения и применения алкенов.

Список литературы

1. Рудзитис Г.Е. Химия. Основы общей химии. 10 класс: учебник для общеобразовательных учреждений: базовый уровень / Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Химия. 10 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2008. - 463 с.

3. Химия. 11 класс. Профильный уровень: учеб. для общеобразоват. учреждений/ В.В. Еремин, Н.Е. Кузьменко, В.В. Лунин и др. - М.: Дрофа, 2010. - 462 с.

4. Хомченко Г.П., Хомченко И.Г. Сборник задач по химии для поступающих в вузы. - 4-е изд. - М.: РИА «Новая волна»: Издатель Умеренков, 2012. - 278 с.

Домашнее задание

1. №№ 12, 13 (с. 39) Рудзитис Г.Е., Фельдман Ф.Г. Химия: Органическая химия. 10 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. - 14-е издание. - М.: Просвещение, 2012.

2. Какая реакция является качественной на этилен и его гомологи?

3. Может ли при хлорировании пропена происходить не присоединение, а замещение? С чем это связано?

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

  • рассмотреть конкретные химические свойства этилена и общие свойства алкенов;
  • углубить и конкретизировать понятия о?-связи, о механизмах химических реакций;
  • дать первоначальные представления о реакциях полимеризации и строении полимеров;
  • разобрать лабораторные и общие промышленные способы получения алкенов;
  • продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

  1. Какие углеводороды называются алкенами?
  1. Каковы особенности их строения?
  1. В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 ––> C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 ––> C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH ––> C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H: H ––> + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 ––> n – CH 2 – CH 2 –– > (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 ––> 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] ––> CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

В органической химии можно встретить углеводородные вещества с разным количеством углерода в цепи и C=C-связью. Они являются гомологами и называются алкенами. Из-за своего строения они химически более активны, чем алканы. Но какие именно реакции для них характерны? Рассмотрим их распространение в природе, разные способы получения и применение.

Что из себя представляют?

Алкены, которые также называются олефинами (маслянистые) получили свое название от этен-хлорида, производного первого представителя этой группы. У всех алкенов есть хотя бы одна двойная C=C-связь. C n H 2n - формула всех олефинов, а название образовывается от алкана с таким же количеством углеродов в молекуле, только суффикс -ан меняется на -ен. Арабской цифрой в конце названия через дефис обозначают номер углерода, от которого начинается двойная связь. Рассмотрим основные алкены, таблица поможет вам запомнить их:

Если молекулы имеют простое неразветвленное строение, то добавляют суффикс -илен, это также отражено в таблице.

Где их можно встретить?

Так как реакционная способность алкенов весьма высока, их представители в природе встречаются крайне редко. Принцип жизни молекулы олефинов — "давай дружить". Нет вокруг других веществ — не беда, будем дружить между собой, образуя полимеры.

Но они есть, и небольшое количество представителей входит в состав сопутствующего нефтяного газа, а высших — в нефти, добываемой на территории Канады.

Самый первый представитель алкенов этен — это гормон, стимулирующий созревание плодов, поэтому его в небольших количествах синтезируют представители флоры. Есть алкен цис-9-трикозен, который у самок мухи домашней играет роль полового аттрактанта. Еще его называют мускалур. (Аттрактант — вещества природного или синтетического происхождения, которое вызывает влечение к источнику запаха у другого организма). С точки зрения химии, алкен этот выглядит так:

Так как весьма ценным сырьем являются все алкены, способы получения их искусственным путем весьма разнообразны. Рассмотрим наиболее распространенные.

А если нужно много?

В промышленности класс алкенов, в основном, получается при крекинге, т.е. расщеплении молекулы под воздействием высоких температур, высших алканов. Для реакции необходим нагрев в диапазоне от 400 до 700 °C. Расщепляется алкан так, как ему захочется, образуя алкены, способы получения которых мы рассматриваем, с большим количеством вариантов строения молекул:

C 7 H 16 -> CH 3 -CH=CH 2 + C 4 H 10.

Еще один распространенный способ называется дегидрирование, при котором от представителя ряда алкана в присутствии катализатора отделяют молекулу водорода.

В лабораторных условиях алкены и способы получения отличаются, они основаны на реакциях элиминирования (отщепления группы атомов без их замещения). Чаще всего элиминируются атомы воды из спиртов, галогены, водород или галогенводород. Наиболее распространенный способ получения алкенов — из спиртов в присутствии кислоты, как катализатора. Возможно использование и других катализаторов

Все реакции элиминирования подчинены правилу Зайцева, гласящему:

Атом водорода отщепляется от того углерода, соседствующего с углеродом, несущим группу -OH, у которого меньше водородов.

Применив правило, ответьте, какой продукт реакции будет преобладать? Позже вы узнаете, правильно ли ответили.

Химические свойства

Алкены активно реагируют с веществами, разрывая свою пи-связь (еще одно название связи C=C). Ведь она не такая прочная, как одинарная (сигма-связь). Углеводород из ненасыщенного превращается в насыщенный, не образуя других веществ после реакции (присоединение).

  • присоединение водорода (гидрирование). Присутствие катализатора и нагревания нужна для ее прохождения;
  • присоединение молекул галогенов (галогенирование). Является одной из качественных реакций на пи-связь. Ведь при реакции алкенов с бромной водой, она из бурой становится прозрачной;
  • реакция с галогенводородами (гидрогалогенирование);
  • присоединение воды (гидратация). Условиями прохождения реакции является нагревание и присутствие катализатора (кислоты);

Реакции несимметричных олефинов с галогенводородами и водой подчиняются правилу Марковникова. А значит, водород присоединится к тому углероду из двойной углерод-углеродной связи, у которого уже больше атомов водорода.

  • горение;
  • неполное окисление каталитическое. Продуктом являются циклические оксиды;
  • реакция Вагнера (окисление перманганатом в нейтральной среде). Эта реакция алкенов — еще одна качественная C=C-связь. При протекании розовый раствор марганцовки обесцвечивается. Если ту же реакцию провести в соединенной кислой среде, продукты будут уже другими (карбоновые кислоты, кетоны, углекислый газ);
  • изомеризация. Характерны все виды: цис- и транс-, перемещение двойной связи, циклизация, скелетная изомеризация;
  • полимеризация — главное свойство олефинов для промышленности.

Применение в медицине

Большое практическое значение имеют продукты реакции алкенов. Многие из них используются в медицине. Из пропена получают глицерин. Этот многоатомный спирт является прекрасным растворителем, причем, если его использовать вместо воды, растворы будут более концентрированными. В медицинских целях в нем растворяют алкалоиды, тимол, йод, бром и др. Также глицерин применяют при приготовлении мазей, паст и кремов. Он предотвращает их высыхание. Сам по себе глицерин является антисептиком.

При реакции с хлороводородом получаются производные, которые применяются как местная анестезия при нанесении на кожу, а также для кратковременного наркоза при незначительных хирургических вмешательствах, при помощи ингаляций.

Алкадиены — это алкены с двумя двойными связями в одной молекуле. Основное их применение — производство синтетического каучука, из которого потом изготавливают различные грелки и спринцовки, зонды и катетеры, перчатки, соски и многое другое, что просто незаменимо при уходе за больными.

Применение в промышленности

Вид промышленности Что применяют Каким образом могут использовать
Сельское хозяйство этен ускоряет созревание овощей и фруктов, дефолиация растений, пленки для теплиц
Лако-красочная этен, бутен, пропен и др. для получения растворителей, эфиров, сольвента
Машиностроение 2-метилпропен, этен производство синтетического каучука, смазочные масла, антифриз
Пищевая промышленность этен

производство тефлона, этилового спирт, уксусная кислота

Химическая промышленность этен, полипропилен получают спирты, полимеры (поливинилхлорид, полиэтилен, поливинилацетат, полиизобтилен, уксусный альдегид
Горная промышленность этен и др. взрывчатые вещества

Более широкое применение нашли алкены и их производные в промышленности. (Где и как используются алкены, таблица выше).

Это лишь малая часть использования алкенов и их производных. С каждым годом потребность в олефинах только возрастает, а значит, возрастает потребность и в их производстве.

Выбор редакции
«12» ноября 2012 года Национальный состав населения Республики Бурятия Одним из вопросов, представляющих интерес для широкого круга...

Власти Эквадора лишили Джулиана Ассанжа убежища в лондонском посольстве. Основатель WikiLeaks задержан британской полицией, и это уже...

Вертикаль власти не распространяется на Башкортостан. Публичная политика, которая, казалось, как древний мамонт, давно вымерла на...

Традиционная карельская кухня — элемент культуры народа. Пища — один из важнейших элементов материальной культуры народа. Специфика её...
ТАТАРСКИЙ ЯЗЫК В РАЗГОВОРНИКЕ!Очень легко выучить и начать говорить!Скачайте!Просьба распространять!Русча-татарча сөйләшмәлек!...
Очень часто нам хочется поблагодарить другого человека за что-то. Да даже просто из вежливости, принимая что-то, мы часто говорим...
Характеристика углеводов. Кроме неорганических веществ в состав клетки входят и органические вещества: белки, углеводы, липиды,...
План: Введение1 Сущность явления 2 Открытие броуновского движения 2.1 Наблюдение 3 Теория броуновского движения 3.1 Построение...
На всех этапах существования языка он неразрывно связан с обществом. Эта связь имеет двусторонний характер: язык не существует вне...