Використання векторного твору. Векторний твір. Змішаний твір трьох векторів та його властивості


English: Wikipedia is making the site more secure. Ви використовуєте old web browser, який не може бути підключений до Wikipedia в майбутньому. Please update your device or contact your IT administrator.

中文: 维基百科正在使网站更加安全。您正在使用旧的浏览器、这在将来无法连接维基百科。请更新您的设备または联络您的IT管理员。 ).

Español: Wikipedia має в своєму розпорядженні el sitio mas seguro. Ви використовуєте свій navegador web viejo que no será capaz de conectarse a Wikipedia en el futuro. Actualice su dispositivo o contacto a su administrador informático. Más abajo hay una actualización más larga y más técnica en anglès.

ﺎﻠﻋﺮﺒﻳﺓ: ويكيبيديا تسعى لتأمين الموقع أكثر من ذي قبل. أنت تستخدم متصفح وب قديم لن يتمكن من الاتصال بموقع ويكيبيديا في المستقبل. يرجى تحديث جهازك أو الاتصال بغداري تقنية المعلومات الخاص بك. يوجد تحديث فني أطول ومغرق في التقنية باللغة الإنجليزية تاليا.

Français: Wikipedia va bientôt augmenter la sécurité de son site. Vous utilisez actuellement un navigateur web ancien, що не pourra plus se connecter à Wikipédia lorsque ce sera fait. Merci de mettre à jour votre appareil ou de contacter votre administrateur informatique à cette fin. Des informations supplémentaires plus techniques et en anglais sont disponibles ci-dessous.

日本語: 위키피디아는 사이트의 보안을 강화하고 있습니다.이용 브라우저는 버전이 오래되어, 향후 위키피디아에 접속할 수 없게 될 가능성이 있습니다.디바이스를 갱신하거나 IT 관리자에게 상담해 주세요.기술면의 상세한 갱신 정보는 아래에 영어로 제공됩니다.

Deutsch: Wikipedia erhöht die Sicherheit der Webseite. Du benutzt einen alten Webbrowser, der in Zukunft нігт мейр на Wikipedia zugreifen können wird. Bitte aktualisiere dein Gerat oder sprich deinen IT-Administrator an. Ausführlichere (und technisch detailliertere) Hinweise findest Du unten in englischer Sprache.

Italiano: Wikipedia sta rendendo il sito più sicuro. Stai usando un browser web che non sarà in grado di connettersi a Wikipedia in futuro. Для favore, aggiorna il tuo dispositivo o contatta il tuo amministratore informatico. Più in basso è disponibile un aggiornamento più dettagliato e tecnico in inglese.

Magyar: Biztonságosabb lesz a Wikipedia. A böngésző, amit használsz, nem lesz képes kapcsolódni a jövőben. Hazznalj modernebb szoftvert vagy jelezd a problémát a rendszergazdádnak. Alab olvashatod a részletesebb magyarázatot (angolul).

Svenska: Wikipedia gör sidan mer säker. Du använder en äldre webbläsare som inte kommer att kunna läsa Wikipedia і framtiden. Uppdatera din enhet eller kontakta din IT-administratör. Det finns en längre och mer teknisk förklaring på engelska längre ned.

हिन्दी: विकिपीडिया साइट को और अधिक सुरक्षित बना रहा है। आप एक पुराने वेब ब्राउज़र का उपयोग कर रहे हैं जो भविष्य में विकिपीडिया से कनेक्ट नहीं हो पाएगा। कृपया अपना डिवाइस अपडेट करें या अपने आईटी व्यवस्थापक से संपर्क करें। नीचे अंग्रेजी में एक लंबा और अधिक तकनीकी अद्यतन है।

Використовується для підтримки програмного забезпечення для TLS protocol versions, особливо TLSv1.0 і TLSv1.1, які ваш браузер використовується для підключення до наших мереж. Це зазвичай пов'язано з зареєстрованими браузерами, або за допомогою Android smartphones. Або це може бути interference від корпоративного або індивідуального "Web Security" software, який в даний час підвищує зв'язок безпеки.

Ви повинні upgrade вашого веб-браузера або іншогоwise fix це issue to access our sites. Цей message буде remain until Jan 1, 2020. Після того, як ваш браузер не може бути встановлений для підключення до наших серверів.

На цьому уроці ми розглянемо ще дві операції з векторами: векторний добуток векторіві змішаний твір векторів (відразу посилання, кому потрібне саме воно). Нічого страшного, так іноді буває, що для повного щастя, крім скалярного твору векторів, Потрібно ще і ще. Така ось векторна наркоманія. Може скластися враження, що ми залазимо в нетрі аналітичної геометрії. Це негаразд. У розділі вищої математики взагалі мало дров, хіба що на Буратіно вистачить. Насправді матеріал дуже поширений і простий - навряд чи складніше, ніж те саме скалярний твір, навіть типових завдань буде менше. Головне в аналітичній геометрії, як багато хто переконається чи вже переконався, НЕ ПОМИЛЯТИСЯ У ВИЧИСЛЕННЯХ. Повторюйте як заклинання, і буде вам щастя =)

Якщо вектори виблискують десь далеко, як блискавки на горизонті, не біда, почніть з уроку Вектори для чайників, щоб відновити або знов придбати базові знання про вектори. Більш підготовлені читачі можуть ознайомлюватися з інформацією вибірково, я постарався зібрати максимально повну колекцію прикладів, які часто зустрічаються у практичних роботах

Чим вас одразу порадувати? Коли я був маленьким, то умів жонглювати двома і навіть трьома кульками. Спритно виходило. Зараз жонглювати не доведеться взагалі, оскільки ми розглядатимемо тільки просторові вектори, а плоскі вектори із двома координатами залишаться за бортом. Чому? Такими вже народилися дані дії – векторний та змішаний твір векторів визначено та працюють у тривимірному просторі. Вже простіше!

У цій операції, так само, як і в скалярному творі, беруть участь два вектори. Нехай це будуть нетлінні букви.

Сама дія позначаєтьсяв такий спосіб: . Існують інші варіанти, але я звик позначати векторний твір векторів саме так, у квадратних дужках з хрестиком.

І одразу питання: якщо в скалярному творі векторівберуть участь два вектори, і тут теж множаться два вектори, тоді у чому різниця? Явна різниця, перш за все, в РЕЗУЛЬТАТІ:

Результатом скалярного твору векторів є ЧИСЛО:

Результатом векторного твору векторів є ВЕКТОР: , тобто множимо вектори і знову отримуємо вектор. Закритий клуб. Власне, звідси й назва операції. У різній навчальній літературі позначення теж можуть змінюватись, я використовуватиму букву .

Визначення векторного твору

Спочатку буде визначення з картинкою, потім коментарі.

Визначення: Векторним твором неколінеарнихвекторів, взятих у даному порядку, називається ВЕКТОР , довжинаякого чисельно дорівнює площі паралелограмапобудованого на даних векторах; вектор ортогональний векторів, і спрямований так, що базис має праву орієнтацію:

Розбираємо визначення кісточками, тут багато цікавого!

Отже, можна виділити такі суттєві моменти:

1) Вихідні вектори, позначені червоними стрілками, за визначенням не колінеарні. Випадок колінеарних векторів буде доречно розглянути пізніше.

2) Вектори взяті у строго визначеному порядку: – "а" множиться на "бе", а чи не «бе» на «а». Результатом множення векторівє ВЕКТОР, який позначений синім кольором. Якщо вектори помножити у зворотному порядку, отримаємо рівний за довжиною і протилежний за напрямом вектор (малиновий колір). Тобто справедливо рівність .

3) Тепер познайомимося із геометричним змістом векторного твору. Це дуже важливий пункт! ДОВжина синього вектора (а, отже, і малинового вектора) чисельно дорівнює ПЛОЩІ паралелограма, побудованого на векторах. На малюнку цей паралелограм заштрихований чорним кольором.

Примітка : креслення є схематичним, і, природно, номінальна довжина векторного добутку не дорівнює площі паралелограма.

Згадуємо одну з геометричних формул: площа паралелограма дорівнює добутку суміжних сторін на синус кута між ними. Тому, виходячи зі сказаного вище, справедлива формула обчислення ДОВЖИНИ векторного твору:

Підкреслюю, що у формулі йдеться про ДОВЖИНУ вектора, а не про сам вектор. Який практичний зміст? А сенс такий, що у завданнях аналітичної геометрії площу паралелограма часто знаходять через поняття векторного твору:

Отримаємо другу важливу формулу. Діагональ паралелограма (червоний пунктир) ділить його на два рівні трикутники. Отже, площу трикутника, побудованого на векторах (червоне штрихування), можна знайти за формулою:

4) Не менш важливий факт полягає в тому, що вектор ортогональний векторам, тобто . Зрозуміло, протилежно спрямований вектор (малинова стрілка) теж ортогональний вихідним векторам.

5) Вектор спрямований так, що базисмає правуорієнтацію. На уроці про переході до нового базисуя досить докладно розповів про орієнтації площиниі зараз ми розберемося, що таке орієнтація простору. Поясняти буду на ваших пальцях правої руки. Подумки поєднайте вказівний палецьз вектором і середній палецьз вектором. Безіменний палець та мізинецьпритисніть до долоні. В результаті великий палець- Векторний твір буде дивитися вгору. Це і є правоорієнтований базис (на малюнку саме він). Тепер поміняйте вектори ( вказівний та середній пальці) місцями, в результаті великий палець розгорнеться, і векторний твір уже дивитиметься вниз. Це також правоорієнтований базис. Можливо, у вас виникло питання: а який базис має ліву орієнтацію? "Привласніть" тим же пальцям лівої рукивектори , і отримайте лівий базис і ліву орієнтацію простору (у цьому випадку великий палець розташується у напрямку нижнього вектора). Образно кажучи, ці базиси «закручують» або орієнтують простір у різні боки. І це поняття не слід вважати чимось надуманим чи абстрактним – так, наприклад, орієнтацію простору змінює звичайнісіньке дзеркало, і якщо «витягти відбитий об'єкт із дзеркалля», то його в загальному випадку не вдасться поєднати з «оригіналом». До речі, піднесіть до дзеркала три пальці та проаналізуйте відображення;-)

…як все-таки добре, що ви тепер знаєте про право- та лівоорієнтованихбазисах, бо страшні висловлювання деяких лекторів про зміну орієнтації =)

Векторний твір колінеарних векторів

Визначення докладно розібрано, залишилося з'ясувати, що відбувається, коли колінеарні вектори. Якщо вектори колінеарні, їх можна розмістити на одній прямий і наш паралелограм теж «складається» в одну пряму. Площа такого, як кажуть математики, виродженогоПаралелограма дорівнює нулю. Це ж випливає і з формули - синус нуля або 180 градусів дорівнює нулю, а значить, і площа нульова

Таким чином, якщо , то і . Зверніть увагу, що сам вектор твір дорівнює нульовому вектору, але на практиці цим часто нехтують і пишуть, що він також дорівнює нулю.

Окремий випадок – векторний добуток вектора на самого себе:

За допомогою векторного твору можна перевіряти колінеарність тривимірних векторів, і це завдання серед інших ми теж розберемо.

Для вирішення практичних прикладів може знадобитися тригонометрична таблиця, щоб знаходити значення синусів.

Ну що ж, розпалюємо вогонь:

Приклад 1

а) Знайти довжину векторного твору векторів, якщо

б) Знайти площу паралелограма, побудованого на векторах, якщо

Рішення: Ні, це не друкарська помилка, вихідні дані в пунктах умови я навмисно зробив однаковими. Тому що оформлення рішень відрізнятиметься!

а) За умовою потрібно знайти довжинувекторні (векторні твори). За відповідною формулою:

Відповідь:

Якщо питалося про довжину, то відповіді вказуємо розмірність – одиниці.

б) За умовою потрібно знайти площапаралелограма, побудованого на векторах. Площа даного паралелограма чисельно дорівнює довжині векторного добутку:

Відповідь:

Зверніть увагу, що у відповіді про векторний твір не йдеться взагалі, нас запитували про площі фігуривідповідно розмірність – квадратні одиниці.

Завжди дивимося, ЩО потрібно знайти за умовою, і виходячи з цього формулюємо чіткийвідповідь. Може здатися буквоїдством, але буквоїдів серед викладачів вистачає, і завдання з добрими шансами повернеться на доопрацювання. Хоча це не особливо натягнута причіпка – якщо відповідь некоректна, то складається враження, що людина не розуміється на простих речах і/або не вникла в суть завдання. Цей момент завжди потрібно тримати на контролі, вирішуючи будь-яке завдання з вищої математики та й з інших предметів теж.

Куди поділася велика буква «ен»? В принципі, її можна було додатково приліпити до рішення, але з метою скоротити запис, я цього не зробив. Сподіваюся, всім зрозуміло, що і це позначення одного і того ж.

Популярний приклад для самостійного вирішення:

Приклад 2

Знайти площу трикутника, побудованого на векторах , якщо

Формула знаходження площі трикутника через векторний добуток дана в коментарях до визначення. Рішення та відповідь наприкінці уроку.

На практиці завдання справді дуже поширене, трикутниками взагалі можуть закатувати.

Для вирішення інших завдань нам знадобляться:

Властивості векторного твору векторів

Деякі властивості векторного твору ми вже розглянули, проте я їх включу до цього списку.

Для довільних векторів та довільного числа справедливі такі властивості:

1) В інших джерелах інформації цей пункт зазвичай не виділяють у властивостях, але він дуже важливий у практичному плані. Тож нехай буде.

2) – властивість теж розібрана вище, іноді її називають антикомутативністю. Інакше кажучи, порядок векторів має значення.

3) – поєднані або асоціативнізакони векторної праці. Константи безпроблемно виносяться за межі векторного твору. Справді, чого їм робити?

4) - розподільні або дистрибутивнізакони векторної праці. З розкриттям дужок також немає проблем.

Як демонстрацію розглянемо коротенький приклад:

Приклад 3

Знайти , якщо

Рішення:За умовою знову потрібно знайти довжину векторного твору. Розпишемо нашу мініатюру:

(1) Згідно з асоціативними законами, виносимо константи за межі векторного твору.

(2) Виносимо константу межі модуля, у своїй модуль «з'їдає» знак «мінус». Довжина ж може бути негативною.

(3) Подальше зрозуміло.

Відповідь:

Пора підкинути дров у вогонь:

Приклад 4

Обчислити площу трикутника, побудованого на векторах , якщо

Рішення: Площа трикутника знайдемо за формулою . Загвоздка у тому, що вектори «це» і «де» самі представлені як сум векторів. Алгоритм тут стандартний і чимось нагадує приклади №3 та 4 уроку Скалярний добуток векторів. Рішення для ясності розіб'ємо на три етапи:

1) На першому кроці висловимо векторний твір через векторний твір, по суті, виразимо вектор через вектор. Про довжини поки що ні слова!

(1) Підставляємо вирази векторів.

(2) Використовуючи дистрибутивні закони, розкриваємо дужки за правилом множення багаточленів.

(3) Використовуючи асоціативні закони, виносимо всі константи за межі векторних творів. При малому досвіді дії 2 і 3 можна виконувати одночасно.

(4) Перший і останній доданок дорівнює нулю (нульовому вектору) завдяки приємній властивості. У другому доданку використовуємо властивість антикомутативності векторного твору:

(5) Наводимо подібні доданки.

В результаті вектор виявився через вектор, чого і потрібно досягти:

2) На другому етапі знайдемо довжину необхідного нам векторного твору. Ця дія нагадує Приклад 3:

3) Знайдемо площу шуканого трикутника:

Етапи 2-3 рішення можна було оформити і одним рядком.

Відповідь:

Розглянуте завдання досить поширене у контрольних роботах, ось приклад для самостійного вирішення:

Приклад 5

Знайти , якщо

Коротке рішення та відповідь наприкінці уроку. Подивимося, наскільки ви були уважні щодо попередніх прикладів;-)

Векторний твір векторів у координатах

, заданих в ортонормованому базисі , виражається формулою:

Формула і справді простецька: у верхній рядок визначника записуємо координатні вектори, у другий і третій рядки «укладаємо» координати векторів, причому вкладаємо у строгому порядку- Спершу координати вектора "ве", потім координати вектора "дубль-ве". Якщо вектори потрібно помножити в іншому порядку, то рядки слід поміняти місцями:

Приклад 10

Перевірити, чи колінеарні будуть наступні вектори простору:
а)
б)

Рішення: Перевірка заснована на одному із тверджень даного уроку: якщо вектори колінеарні, то їх векторний добуток дорівнює нулю (нульовому вектору): .

а) Знайдемо векторний твір:

Таким чином, вектори не колінеарні.

б) Знайдемо векторний твір:

Відповідь: а) не колінеарні, б)

Ось, мабуть, і всі основні відомості про векторний добуток векторів.

Даний розділ буде не дуже великим, оскільки завдань, де використовується змішане твір векторів, небагато. Фактично все впиратиметься у визначення, геометричний зміст і пару робочих формул.

Змішаний твір векторів – це твір трьох векторів:

Ось так вони вишикувалися паровозиком і чекають, не дочекаються, коли їх обчислять.

Спочатку знову визначення та картинка:

Визначення: Змішаним твором некомпланарнихвекторів, взятих у даному порядку, називається об'єм паралелепіпеда, побудованого на даних векторах, з знаком «+», якщо базис правий, і знаком «–», якщо базис лівий.

Виконаємо малюнок. Невидимі нам лінії прокреслені пунктиром:

Поринаємо у визначення:

2) Вектори взяті у певному порядку, тобто перестановка векторів у творі, як ви здогадуєтеся, не минає без наслідків.

3) Перед тим, як прокоментувати геометричний зміст, зазначу очевидний факт: змішаний добуток векторів є ЧИСЛОМ: . У навчальній літературі оформлення може бути дещо іншим, я звик позначати змішане твір через , а результат обчислень літерою «пе».

За визначенням змішаний твір – це обсяг паралелепіпеда, побудованого на векторах (фігура прокреслена червоними векторами та лініями чорного кольору). Тобто число дорівнює обсягу даного паралелепіпеда.

Примітка : креслення є схематичним.

4) Не будемо знову паритися з поняттям орієнтації базису і простору. Сенс заключної частини у тому, що до обсягу може додаватися знак мінус. Простими словами, змішане твір може бути негативним: .

Безпосередньо з визначення слідує формула обчислення об'єму паралелепіпеда, побудованого на векторах.

Перед тим, як дати поняття векторного твору, звернемося до питання орієнтації впорядкованої трійки векторів a → , b → , c → у тривимірному просторі.

Відкладемо спочатку вектори a → , b → , c → від однієї точки. Орієнтація трійки a → , b → , c → буває правою чи лівою, залежно від напрямку самого вектора c → . Від того, в яку сторону здійснюється найкоротший поворот від вектора a → до b → з кінця вектора c → буде визначено вид трійки a → b → c → .

Якщо найкоротший поворот здійснюється проти годинникової стрілки, то трійка векторів a → , b → , c → називається правою, якщо за годинниковою стрілкою – лівий.

Далі візьмемо два не колінеарні вектори a → і b → . Відкладемо потім від точки A вектори AB → = a → і A C → b → . Побудуємо вектор A D → = c → , який одночасно перпендикулярний і A B → і A C → . Таким чином, при побудові самого вектора A D → = c → ми можемо вчинити подвійно, поставивши йому або один напрямок, або протилежний (дивіться ілюстрацію).

Впорядкована трійка векторів a → , b → , c → може бути, як ми з'ясували правою чи лівою залежно від напрямку вектора.

Зі сказаного вище можемо ввести визначення векторного твору. Це визначення дається для двох векторів, визначених у прямокутній системі координат тривимірного простору.

Визначення 1

Векторним твором двох векторів a → та b → називатимемо такий вектор заданий у прямокутній системі координат тривимірного простору такий, що:

  • якщо вектори a → та b → колінеарні, він буде нульовим;
  • він буде перпендикулярний і вектору a → і вектору b → тобто. ∠ a → c → ∠ b → c → = π 2 ;
  • його довжина визначається за формулою: c → = a → b → sin ∠ a → , b → ;
  • трійка векторів a → , b → , c → має таку саму орієнтацію, як і задана система координат.

Векторний добуток векторів a → і b → має таке позначення: a → × b → .

Координати векторного твору

Оскільки будь-який вектор має певні координати в системі координат, можна ввести друге визначення векторного твору, яке дозволить знаходити його координати за заданими координатами векторів.

Визначення 2

У прямокутній системі координат тривимірного простору векторним твором двох векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) називають вектор c → = a → x b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → , де i → j → k → є координатними векторами.

Векторний добуток можна представити як визначник квадратної матриці третього порядку, де перший рядок є вектори орти i → , j → , k → , другий рядок містить координати вектора a → , а третій – координати вектора b → у заданій прямокутній системі координат, даний визначник матриці виглядає так: c → = a → x b → = i → j → k → a x a y z b x b y b z

Розклавши даний визначник по елементам першого рядка, отримаємо рівність: = → → → → → → → → → → → → → → → → → → → a → (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k →

Властивості векторного твору

Відомо, що векторний добуток у координатах представляється як визначник матриці c → = a → × b → = i → j → k → властивостей визначника матрицівиводяться такі властивості векторного твору:

  1. антикомутативність a → × b → = - b → × a →;
  2. дистрибутивність a (1) → + a (2) → × b = a (1) → × b → + a (2) → × b → або a → × b (1) → + b (2) → = a → × b (1) → + a → × b (2) → ;
  3. асоціативність λ · a → × b → = λ · a → × b → або a → × (λ · b →) = λ · a → × b → , де λ - довільне дійсне число.

Ці властивості мають нескладні докази.

Наприклад можемо довести властивість антикомутативності векторного твору.

Доказ антикомутативності

За визначенням a → x b → = i → j → k → a x a y z b x b y b z і b → x a → = i → j → k → b x b y b a x a y a z . А якщо два рядки матриці переставити місцями, то значення визначника матриці має змінюватися на протилежне, отже, a → x b → = i → j → k → a x a y z b x b y b = - i → j → та доводить антикомутативність векторного твору.

Векторний твір – приклади та рішення

Найчастіше зустрічаються три типи завдань.

У задачах першого типу зазвичай задані довжини двох векторів та кут між ними, а потрібно знайти довжину векторного твору. У цьому випадку користуються наступною формулою c → a → b → sin ∠ a → , b → .

Приклад 1

Знайдіть довжину векторного добутку векторів a → та b → , якщо відомо a → = 3 , b → = 5 , ∠ a → , b → = π 4 .

Рішення

За допомогою визначення довжини векторного добутку векторів a → і b → розв'яжемо дану задачу: a → × b → = a → b → sin ∠ a → b → = 3 · 5 · sin π 4 = 15 2 2 .

Відповідь: 15 2 2 .

Завдання другого типу мають зв'язок із координатами векторів, у яких векторний твір, його довжина тощо. шукаються через відомі координати заданих векторів a → = (a x ; a y ; a z) і b → = (b x ; b y ; b z) .

Для такого типу завдань можна вирішити масу варіантів завдань. Наприклад, можуть бути задані не координати векторів a → і b → , які розкладання по координатним векторам виду b → = b x · i → + b y · j → + b z · k → і c → = a → ? вектори a → та b → можуть бути задані координатами точок їх початку та кінця.

Розглянемо такі приклади.

Приклад 2

У прямокутній системі координат задані два вектори a → = (2; 1; - 3), b → = (0; - 1; 1). Знайдіть їхній векторний твір.

Рішення

За другим визначенням знайдемо векторний добуток двох векторів у заданих координатах: a → x b → = (a y · b z - a z · b y) · i → + (a z · b x - a x · b z) · j → + (a x · b y - a y · b x) · k → = = (1 · 1 - (- 3) · (- 1)) · i → + ((- 3) · 0 - 2 · 1) · j → + (2 · (- 1) - 1 · 0) · k → = = - 2 i → - 2 j → - 2 k → .

Якщо записати векторний твір через визначник матриці, то рішення даного прикладу виглядає наступним чином: 2 1 - 3 0 - 1 1 = - 2 i → - 2 j → - 2 k → .

Відповідь: a → × b → = - 2 i → - 2 j → - 2 k → .

Приклад 3

Знайдіть довжину векторного добутку векторів i → - j → та i → + j → + k → , де i → , j → , k → - орти прямокутної декартової системи координат.

Рішення

Для початку знайдемо координати заданого векторного твору i → - j → × i → + j → + k → у цій прямокутній системі координат.

Відомо, що вектори i → - j → і i → + j → + k → мають координати (1; - 1; 0) і (1; 1; 1) відповідно. Знайдемо довжину векторного твору за допомогою визначника матриці, тоді маємо i → - j → × i → + j → + k → = i → j → k → 1 - 1 0 1 1 1 = - i → - j → + 2 k → .

Отже, векторний твір i → - j → × i → + j → + k → має координати (- 1; - 1; 2) у заданій системі координат.

Довжину векторного твору знайдемо за формулою (див. розділ довжини вектора): i → - j → × i → + j → + k → = - 1 2 + - 1 2 + 2 2 = 6 .

Відповідь: i → -j → × i → + j → + k → = 6 . .

Приклад 4

У прямокутній декартовій системі координат задані координати трьох точок A (1, 0, 1), B (0, 2, 3), C (1, 4, 2). Знайдіть якийсь вектор, перпендикулярний A B → і A C → одночасно.

Рішення

Вектори A B → і A C → мають наступні координати (-1; 2; 2) і (0; 4; 1) відповідно. Знайшовши векторний добуток векторів A B → і A C → , очевидно, що він є перпендикулярним вектором за визначенням і до A B → і до A C →, тобто є рішенням нашої задачі. Знайдемо його A B → A C → = i → j → k → - 1 2 2 0 4 1 = - 6 i → + j → - 4 k → .

Відповідь: - 6 i → + j → - 4 k → . - один із перпендикулярних векторів.

Завдання третього типу орієнтовані використання властивостей векторного добутку векторів. Після застосування яких будемо отримувати рішення заданого завдання.

Приклад 5

Вектори a → та b → перпендикулярні та їх довжини рівні відповідно 3 та 4 . Знайдіть довжину векторного твору 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → * a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b → .

Рішення

За властивістю дистрибутивності векторного твору ми можемо записати 3 · a → - b → × a → - 2 · b → = 3 · a → × a → - 2 · b → + - b → × a → - 2 · b → = = 3 · a → × a → + 3 · a → × - 2 · b → + - b → × a → + - b → × - 2 · b →

За якістю асоціативності винесемо числові коефіцієнти за знак векторних творів в останньому виразі: 3 · a → × a → + 3 · a → = 3 · a → × a → + 3 · (-2) · a → × b → + (- 1) · b → × a → + (- 1) · (- 2) · b → × b → = = 3 · a → × a → - 6 · a → × b → - b → × a → + 2 · b → × b →

Векторні твори a → × a → і b → × b → рівні 0, оскільки a → × a → = a → · a → · sin 0 = 0 і b → × b → = b → 0 , тоді 3 · a → ? .

З антикомутативності векторного твору випливає - 6 · a → × b → - b → × a → = - 6 · a → × b → - (- 1) · a → × b → = - 5 · a → × b → . .

Скориставшись властивостями векторного твору, отримуємо рівність 3 · a → - b → × a → - 2 · b → = = - 5 · a → × b → .

За умовами вектори a → та b → перпендикулярні, тобто кут між ними дорівнює π 2 . Тепер залишається лише підставити знайдені значення у відповідні формули: 3 · a → - b → ? → · sin (a → , b →) = 5 · 3 · 4 · sin π 2 = 60 .

Відповідь: 3 · a → - b → × a → - 2 · b → = 60 .

Довжина векторного добутку векторів з орпеділення дорівнює a → x b → = a → b → sin ∠ a → , b → . Оскільки відомо (зі шкільного курсу), площа трикутника дорівнює половині добутку довжин двох сторін помножене на синус кута між цими сторонами. Отже, довжина векторного добутку дорівнює площі паралелограма - подвоєного трикутника, а саме добутку сторін у вигляді векторів a → і b → відкладені від однієї точки на синус кута між ними sin ∠ a → , b → .

Це і є геометричне значення векторного твору.

Фізичний зміст векторного твору

У механіці, одному з розділів фізики завдяки векторному твору можна визначити момент сили щодо точки простору.

Визначення 3

Під моментом сили F → ​​, прикладеної до точки B , щодо точки A розумітимемо наступний векторний твір A B → × F → .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Даний онлайн калькулятор обчислює векторне твір векторів. Надається докладне рішення. Для обчислення векторного добутку векторів введіть координати векторів у комірки та натискайте на кнопку "Обчислити."

×

Попередження

Очистити всі осередки?

Закрити Очистити

Інструкція щодо введення даних.Числа вводяться як цілих чисел (приклади: 487, 5, -7623 тощо.), десяткових чисел (напр. 67., 102.54 тощо.) чи дробів. Дроб треба набирати у вигляді a/b, де a і b (b>0) цілі або десяткові числа. Приклади 45/5, 6.6/76.4, -7/6.7 тощо.

Векторний твір векторів

Перш ніж перейти до визначення векторного твору векторів, розглянемо поняття впорядкована трійка векторів, ліва трійка векторів, права трійка векторів.

Визначення 1. Три вектори називаються упорядкованої трійкою(або трійкою ), якщо зазначено, який із цих векторів перший, який другий та який третій.

Запис cba- означає - першим є вектор c, другим є вектор bі третім є вектор a.

Визначення 2. Трійка некомпланарних векторів abcназивається правою (лівою), якщо при приведенні до загального початку ці вектори розташовуються так, як розташовані відповідно великий, незігнутий вказівний і середній пальці правої (лівої) руки.

Визначення 2 можна формулювати і інакше.

Визначення 2". Трійка некомпланарних векторів abcназивається правою (лівою), якщо при приведенні до загального початку, вектор cрозташовується по той бік від площини, що визначається векторами aі b, звідки найкоротший поворот від aдо bвідбувається проти годинникової стрілки (за годинниковою стрілкою).

Трійка векторів abc, зображена на рис. 1 є правою, а трійка abcзображена на рис. 2 є лівою.

Якщо дві трійки векторів є правими чи лівими, кажуть, що вони однієї орієнтації. Інакше кажуть, що вони є протилежною орієнтацією.

Визначення 3. Декартова або афінна система координат називається правою (лівою), якщо три базисні вектори утворюють праву (ліву) трійку.

Для певності, надалі ми розглядатимемо лише праві системи координат.

Визначення 4. Векторним творомвектора aна вектор bназивається вектор з, що позначається символом c=[ab] (або c=[a,b], або c=a×b) і задовольняє наступним трьом вимогам:

  • довжина вектора здорівнює добутку довжин векторів aі bна синус кута φ між ними:
  • |c|=|[ab]|=|a||b|sinφ; (1)
  • вектор зортогональний до кожного з векторів aі b;
  • вектор cспрямований так, що трійка abcє правою.

Векторний добуток векторів має такі властивості:

  • [ab]=−[ba] (антиперестановністьспівмножників);
  • [(λa)b]=λ [ab] (сполучністьщодо числового множника);
  • [(a+b)c]=[ac]+[bc] (розподільністьщодо суми векторів);
  • [aa]=0 для будь-якого вектора a.

Геометричні властивості векторного твору.

Теорема 1. Для колінеарності двох векторів необхідна і досить рівність нуля їхнього векторного твору.

Доказ. Необхідність. Нехай вектори aі bколінеарні. Тоді кут між ними 0 або 180° sinφ=sin180=sin 0 = 0. Отже, враховуючи вираз (1), довжина вектора cдорівнює нулю. Тоді cнульовий вектор.

Достатність. Нехай векторний добуток векторів aі bнавно нулю: [ ab]=0. Доведемо, що вектори aі bколінеарні. Якщо хоча б один із векторів aі bнульовий, то ці вектори колінеарні (бо нульовий вектор має невизначений напрямок і його можна вважати колінеарним будь-якому вектору).

Якщо ж обидва вектори aі bненульові, то | a|>0, |b|>0. Тоді з [ ab]=0 і з (1) випливає, що sinφ=0. Отже вектори aі bколінеарні.

Теорему доведено.

Теорема 2. Довжина (модуль) векторного твору ab] дорівнює площі Sпаралелограма, побудованого на наведених до загального початку векторах aі b.

Доказ. Як відомо, площа паралелограма дорівнює добутку суміжних сторін цього паралелограма на синус кута між ними. Отже:

Тоді векторний добуток цих векторів має вигляд:

Розкриваючи визначник за елементами першого рядка, ми отримаємо розкладання вектора. a×bпо базису i, j, k, Яке еквівалентно формулі (3).

Доказ теореми 3. Складемо всі можливі пари з базисних векторів i, j, kі порахуємо їхній векторний твір. Потрібно враховувати, що базисні вектори взаємно ортогональні, утворюють праву трійку і мають одиничну довжину (іншими словами можна припускати, що i={1, 0, 0}, j={0, 1, 0}, k= (0, 0, 1)). Тоді маємо:

З останньої рівності та співвідношень (4), отримаємо:

Складемо 3×3 матрицю, перший рядок якої базисні вектори i, j, k,а інші рядки заповнені елементами векторів aі b:

Таким чином, результатом векторного твору векторів aі bбуде вектор:

.

Приклад 2. Знайти векторний добуток векторів [ ab], де вектор aпредставлений двома точками. Початкова точка вектора: , кінцева точка вектор a: , вектор bмає вигляд .

Розв'язання. Перемістимо перший вектор на початок координат. Для цього віднімемо з відповідних координат кінцевої точки координати початкової точки:

Обчислимо визначник цієї матриці, розклавши її по першому рядку. Результатом цих обчислень отримаємо векторний добуток векторів aі b.

Вибір редакції
З Федерального закону від 25 лютого 1999 року №39-ФЗ «Про інвестиційну діяльність у Російської Федерації, здійснюваної в...

У доступній формі, зрозумілій навіть незламним чайникам, ми розповімо про облік розрахунків з податку на прибуток згідно з Положенням по...

Коректне заповнення декларації з акцизів на алкоголь дозволить уникнути суперечок із контролюючими органами. Під час підготовки документа...

Олена Миро – молода московська письменниця, яка веде популярний блог на livejournal.com, і в кожному пості закликає читачів.
«Няне» Олександр Пушкін Подруга днів моїх суворих, Голубко старенька моя! Одна в глушині соснових лісів Давно, давно ти чекаєш мене. Ти під...
Я чудово розумію, що серед 86% громадян нашої країни, які підтримують Путіна, є не лише добрі, розумні, чесні та гарні...
Суші та роли – страви родом із Японії. Але росіяни полюбили їх усією душею і давно вважають своєю національною стравою. Багато хто навіть робитиме їх...
Начос (Nachos) - одна з найвідоміших та найпопулярніших страв мексиканської кухні. За легендою, блюдо винайшов метрдотель невеликого...
У рецептах італійської кухні досить часто можна зустріти такий цікавий інгредієнт, як "Рікотта". Пропонуємо розібратися, що це...