Получение необходимого сдвига фаз. От чего зависит угол сдвига фаз напряжения и тока в цепи


Из серии "Физические основы звука" , посвященной объяснению основ физических процессов, с которыми приходится сталкиваться музыкантам и просто любителям музыки. Материал дается языком, доступным для людей далеких от техники и сегодня мы рассмотрим фазу сигнала и фазовый сдвиг.

Мы вплотную подошли к тому, чтобы рассказать, что же такое фаза.

Посмотрим на формулу, описывающую синусоидальное колебание:

S(t)=Amp*sin(Ф) ,

где S(t) - это значение сигнала (уровень звукового давления, величина семпла,

уровень напряжения на входе колонок) в момент времени t;

Amp - амплитуда сигнала (максимально возможное значение для этого колебания);

sin - синусоидальная функция.

Ф - фаза сигнала равна:

Ф=2*PI*f+ф/360*2*PI

PI - число «пи»;

f - частота (высота тона) сигнала в Герцах;

ф - сдвиг фазы сигнала в градусах.

Фаза в течении периода колебания меняется от 0 до 360 градусов . Потом опять - от 0 до 360, и так далее. Поскольку фаза однозначно связана с уровнем колебания в точке периода, соответствующего фазе, то:

Фазу, с некоторым допущением, можно рассматривать, как мгновенный уровень сигнала в определенной точке времени внутри периода.

При значении фазы 0 градусов - уровень сигнала (синусоиды) равен 0.

При значении фазы 90 градусов - 1 Па.

При значении фазы 180 градусов - снова 1 Па.

При значении фазы 360 градусов (все равно, что 0 градусов следующего периода) - снова 0 Па.

С течением времени уровень сигнала изменяется по определенному закону, поэтому грубо можно сказать и так:

ФАЗА СИГНАЛА - это уровень сигнала в текущий момент времени.

ФАЗА СИГНАЛА - это уровень звукового давления в текущий момент времени в нашей точке пространства.

Теперь о том, как такое виртуальное понятие, как ФАЗА СИГНАЛА влияет на реальную жизнь.

Допустим две колонки порождают в точке нахождения слушателя переменные звуковые давления, которые складываются друг с другом. Эти давления то нарастают, то убывают. А если мы предположим, что давления от обоих колонок изменяются одинаково, но всегда в противоположную сторону. То есть,

давление от первой колонки 0,5 Па (паскалей), а от второй минус 0,5 Па,

от первой минус 1 Па, от второй 1 Па.

Такое явление называется противофазой . Суммарная громкость звука в точке слушателя - всегда равна нулю.

Что же такое противофаза по формуле синусоидального колебания?

S(t)=Amp*sin(2*PI*f+ф/360*2*PI)

Это когда в одной колонке сигнал изменяется по формуле

S(t)=Amp*sin(2*PI*f+0) , фазовый сдвиг ф=0 градусов.

А в другой колонке сигнал изменяется по формуле (сигналы по форме одинаковые, но с задержкой по времени)

S(t)=Amp*sin(2*PI*f+180/360*2*PI) , фазовый сдвиг ф=180 градусов.

360 градусов - длина периода сигнала, 180 градусов - половина периода сигнала.

Иными словами колебание во второй колонке задержано на половину периода (на 180 градусов).

Если задержка равна нулю , то уровень сигнала наоборот увеличивается, т.к. давление от первой колонки - 1 Па, от второй 1 Па, в сумме 1+1=2 Па. В этом случае говорят, что сигналы в фазе (фазовый сдвиг равен 0 градусов).

При значениях фазового сдвига от 0 до 180 градусов - суммарный уровень громкости становится меньше , пока не станет равным нулю при значении фазового сдвига 180 градусов .

Если фазовый сдвиг становится больше 180 градусов , то суммарный уровень громкости опять возрастает .

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

Сдвиг фаз является величиной безразмерной и может измеряться в радианах (градусах) или долях периода. При неизменном, в частности нулевом сдвиге фаз говорят о синхронности двух процессов, или о выполненной синхронизации двух источников переменных величин.

Фазой (фазовым углом) называется угол \varphi = 2 \pi \frac {t} {T} , где T - период , t - доля периода смещения по фазе при наложении синусоид друг на друга. Так что если кривые (переменные величины - синусоиды: колебания , токи) сдвинуты по отношению друг к другу на четверть периода, то мы говорим, что они смещены по фазе на \frac {\pi} {2} ~ (90^\circ) , если на восьмую часть (долю) периода - то, значит, на \frac {\pi} {4} и т. д.
Когда идёт речь о нескольких синусоидах, сдвинутых по фазе, техники говорят о векторах тока или напряжения . Длина вектора соответствует амплитуде синусоиды, а угол между векторами - сдвигу фаз. Многие технические устройства дают нам не простой синусоидальный ток , а такой, кривая которого является суммой нескольких синусоид (соответственно, сдвинутых по фазе).

Наведённая во вторичных обмотках трансформатора ЭДС для любой формы тока совпадает по фазе и форме с ЭДС в первичной обмотке. При противофазном включении обмоток трансформатор изменяет полярность мгновенного напряжения на противоположную, в случае синусоидального напряжения сдвигает фазу на 180°. Применяется в генераторе Мейснера и др.

Напишите отзыв о статье "Сдвиг фаз"

Примечания

См. также

Отрывок, характеризующий Сдвиг фаз

Всё время обеда Анна Михайловна говорила о слухах войны, о Николушке; спросила два раза, когда получено было последнее письмо от него, хотя знала это и прежде, и заметила, что очень легко, может быть, и нынче получится письмо. Всякий раз как при этих намеках графиня начинала беспокоиться и тревожно взглядывать то на графа, то на Анну Михайловну, Анна Михайловна самым незаметным образом сводила разговор на незначительные предметы. Наташа, из всего семейства более всех одаренная способностью чувствовать оттенки интонаций, взглядов и выражений лиц, с начала обеда насторожила уши и знала, что что нибудь есть между ее отцом и Анной Михайловной и что нибудь касающееся брата, и что Анна Михайловна приготавливает. Несмотря на всю свою смелость (Наташа знала, как чувствительна была ее мать ко всему, что касалось известий о Николушке), она не решилась за обедом сделать вопроса и от беспокойства за обедом ничего не ела и вертелась на стуле, не слушая замечаний своей гувернантки. После обеда она стремглав бросилась догонять Анну Михайловну и в диванной с разбега бросилась ей на шею.
– Тетенька, голубушка, скажите, что такое?
– Ничего, мой друг.
– Нет, душенька, голубчик, милая, персик, я не отстaнy, я знаю, что вы знаете.
Анна Михайловна покачала головой.
– Voua etes une fine mouche, mon enfant, [Ты вострушка, дитя мое.] – сказала она.
– От Николеньки письмо? Наверно! – вскрикнула Наташа, прочтя утвердительный ответ в лице Анны Михайловны.
– Но ради Бога, будь осторожнее: ты знаешь, как это может поразить твою maman.
– Буду, буду, но расскажите. Не расскажете? Ну, так я сейчас пойду скажу.
Анна Михайловна в коротких словах рассказала Наташе содержание письма с условием не говорить никому.
Честное, благородное слово, – крестясь, говорила Наташа, – никому не скажу, – и тотчас же побежала к Соне.
– Николенька…ранен…письмо… – проговорила она торжественно и радостно.
– Nicolas! – только выговорила Соня, мгновенно бледнея.
Наташа, увидав впечатление, произведенное на Соню известием о ране брата, в первый раз почувствовала всю горестную сторону этого известия.
Она бросилась к Соне, обняла ее и заплакала. – Немножко ранен, но произведен в офицеры; он теперь здоров, он сам пишет, – говорила она сквозь слезы.
– Вот видно, что все вы, женщины, – плаксы, – сказал Петя, решительными большими шагами прохаживаясь по комнате. – Я так очень рад и, право, очень рад, что брат так отличился. Все вы нюни! ничего не понимаете. – Наташа улыбнулась сквозь слезы.

Проделаем следующий опыт. Возьмем описанный в § 153 осциллограф с двумя петлями и включим его в цепь так (рис. 305,а), чтобы петля 1 была включена в цепь последовательно с конденсатором, а петля 2 параллельно этому конденсатору. Очевидно, что кривая, получаемая от петли 1, изображает форму тока, проходящего через конденсатор, а от петли 2 дает форму напряжения между обкладками конденсатора (точками и ), потому что в этой петле осциллографа ток в каждый момент времени пропорционален напряжению. Опыт показывает, что в этом случае кривые тока и напряжения смещены по фазе, причем ток опережает по фазе напряжение на четверть периода (на ). Если бы мы заменили конденсатор катушкой с большой индуктивностью (рис. 305,б), то оказалось бы, что ток отстает по фазе от напряжения на четверть периода (на ). Наконец, таким же образом можно было бы показать, что в случае активного сопротивления напряжение и ток совпадают по фазе (рис. 305,в).

Рис. 305. Опыт по обнаружению сдвига фаз между током и напряжением: слева – схема опыта, справа – результаты

В общем случае, когда участок цепи содержит не только активное, но и реактивное (емкостное, индуктивное или и то и другое) сопротивление, напряжение между концами этого участка сдвинуто по фазе относительно тока, причем сдвиг фаз лежит в пределах от до и определяется соотношением между активным и реактивным сопротивлениями данного участка цепи.

В чем заключается физическая причина наблюдаемого сдвига фаз между током и напряжением?

Если в цепь не входят конденсаторы и катушки, т. е. емкостным и индуктивным сопротивлениями цепи можно пренебречь по сравнению с активным, то ток следует за напряжением, проходя одновременно с ним через максимумы и нулевые значения, как это показано на рис. 305,в.

Если цепь имеет заметную индуктивность , то при прохождении по ней переменного тока в цепи возникает э. д. с. самоиндукции. Эта э. д. с. по правилу Ленца направлена так, что она стремится препятствовать тем изменениям магнитного поля (а следовательно, и изменениям тока, создающего это поле), которые вызывают э. д. с. индукции. При нарастании тока э. д. с. самоиндукции препятствует этому нарастанию, и потому ток позже достигает максимума, чем в отсутствие самоиндукции. При убывании тока э. д. с. самоиндукции стремится поддерживать ток и нулевые значения тока будут достигнуты в более поздний момент, чем в отсутствие самоиндукции. Таким образом, при наличии индуктивности ток отстает по фазе от тока в отсутствие индуктивности, а следовательно, отстает по фазе от своего напряжения.

Если активным сопротивлением цепи можно пренебречь по сравнению с ее индуктивным сопротивлением , то отставание тока от напряжения по времени равно (сдвиг фаз равен ), т. е. максимум совпадает с , как это показано на рис. 305,б. Действительно, в этом случае напряжение на активном сопротивлении , ибо , и, следовательно, все внешнее напряжение уравновешивается э. д. с. индукции, которая противоположна ему по направлению: . Таким образом, максимум совпадает с максимумом , т. е. наступает в тот момент, когда изменяется быстрее всего, а это бывает, когда . Наоборот, в момент, когда проходит через максимальное значение, изменение тока наименьшее , т. е. в этот момент .

Если активное сопротивление цепи не настолько мало, чтобы им можно было пренебречь, то часть внешнего напряжения падает на сопротивлении , а остальная часть уравновешивается э. д. с. самоиндукции: . В этом случае максимум отстоит от максимума по времени меньше, чем на (сдвиг фаз меньше ), как это изображено на рис. 306. Расчет показывает, что в этом случае отставание по фазе может быть вычислено по формуле

. (162.1)

При имеем и , как это объяснено выше.

Рис. 306. Сдвиг фаз между током и напряжением в цепи, содержащей активное и индуктивное сопротивления

Если цепь состоит из конденсатора емкости , а активным сопротивлением можно пренебречь, то обкладки конденсатора, присоединенные к источнику тока с напряжением , заряжаются и между ними возникает напряжение . Напряжение на конденсаторе следует за напряжением источника тока практически мгновенно, т. е. достигает максимума одновременно с и обращается в нуль, когда .

Зависимость между током и напряжением в этом случае показана на рис. 307,а. На рис. 307,б условно изображен процесс перезарядки конденсатора, связанный с появлением переменного тока в цепи.

Рис. 307. а) Сдвиг фаз между напряжением и током в цепи с емкостным сопротивлением в отсутствие активного сопротивления. б) Процесс перезарядки конденсатора в цепи переменного тока

Когда конденсатор заряжен до максимума (т. е. , а следовательно, и имеют максимальное значение), ток и вся энергия цепи есть электрическая энергия заряженного конденсатора (точка на рис. 307,а). При уменьшении напряжения конденсатор начинает разряжаться и в цепи появляется ток; он направлен от обкладки 1 к обкладке 2, т. е. навстречу напряжению . Поэтому на рис. 307,а он изображен как отрицательный (точки лежат ниже оси времени). К моменту времени конденсатор полностью разряжен ( и ), а ток достигает максимального значения (точка ); электрическая энергия равна нулю, и вся энергия сводится к энергии магнитного поля, создаваемого током. Далее, напряжение меняет знак, и ток начинает ослабевать, сохраняя прежнее направление. Когда (и ) достигнет максимума, вся энергия вновь станет электрической, и ток (точка ). В дальнейшем (и ) начинает убывать, конденсатор разряжается, ток нарастает, имея теперь направление от обкладки 2 к обкладке 1, т. е. положительное; ток доходит до максимума в момент, когда (точка ) и т. д. Из рис. 307,а видно, что ток раньше, чем напряжение, достигает максимума и проходит через нуль, т. е. ток опережает напряжение по фазе., как это объяснено выше.

Рис. 308. Сдвиг фаз между током и напряжением в цепи, содержащей активное и емкостное сопротивления

При решении ряда практических задач нередко необходимо получить определенный сдвиг фаз, причем не только по величине, но и в заданном направлении. Такие примерами описаны в статье "Группы соединения трансформаторов ".

Сдвиг на 30 и 60°.

Соединяя обмотки в звезду и треугольник, получают сдвиги, кратные 30°, причем в зависимости от того, что с чем (концы, начала) соединяют и в каком направлении (от фазы A к фазе B или наоборот), сдвиг получается в ту или иную сторону.

При соединении в зигзаг – звезду (смотрите статью "Схема соединения "Зигзаг ") конец одной секции соединяется с концом другой секции и угол изменяется на 30°. Если же соединить не конец с концом, а конец с началом, то векторы повернутся на 60° (смотрите рисунок 4, в статье "Некоторые ошибки при соединениях в звезду, треугольник, зигзаг"). Иными словами, пересоединяя обмотки, можно легко получить сдвиг в 30 и 60°.

Надо при этом иметь в виду следующее. Во-первых, при пересоединении обмоток может измениться не только угол (что требуется), но и напряжение (смотрите рисунок 4, в , в статье "Некоторые ошибки при соединениях в звезду, треугольник, зигзаг "). Во-вторых, встречное включение обмоток – предельный случай – или изменение угла между ними может снизить индуктивное сопротивление, а это приведет к возрастанию тока. Возрастание тока опасно для обмотки и, кроме того, может повлечь насыщение магнитопровода. Дело гораздо серьезнее, чем может показаться на первый взгляд, и поэтому, не убедившись в том, что ток не превысил заданного значения, пересоединения выполнять нельзя.

Сдвиг на 90°.

Рассмотрим распространенный пример получения сдвига на 90°. На рисунке 1, а показано включение счетчика реактивной энергии. Заметьте: токовая обмотка (жирная линия) включена в фазу A , а обмотка напряжения присоединена к фазам B и C . Обращаясь к векторной диаграмме на рисунке 1, б , легко видеть, что этим простейшим способом получен сдвиг в 90°, что и требуется в данном случае.

Рисунок 1. Получение сдвига фаз на 90°.

Сдвиг на любой угол от 0 до 90°

легко получить с помощью фазорегулятора – поворотного трехфазного трансформатора. Он представляет собой асинхронную машину с заторможенным ротором. Поворачивая ротор относительно статора, плавно изменяют фазу электродвижущей силы (э. д. с.) ротора, не изменяя ее значения (величины).

Следует отличать фазорегулятор от потенциал-регулятора, называемого также индукционным регулятором. В фазорегуляторе изменяется только фаза; в потенциал-регуляторе изменяются и напряжение и фаза. Кроме того, у фазорегулятора первичная и вторичная обмотки взаимно изолированы, а у потенциал-регулятора соединены.

Заметим в заключение, что любые сдвиги фаз также, можно получить соединяя активные и индуктивные сопротивления и емкости. Такие преобразователи находят широкое применение и называются статическими.

От величины активного, индуктивного и ёмкостного сопротивления.
tg w = (X-C)/R. Где w - угол сдвига фаз, X - индуктивное сопротивление, C- ёмкостное сопротивление, R- активное сопротивление.

Угол сдвига фаз между напряжением и током в электрической цепи определяется аргументом ее комплексного сопротивления  . Поэтому при анализе цепи часто бывает достаточно определить характер изменения этого угла при вариации некоторого параметра.

Пусть R= const, а X =var. Тогда конец вектора Z будет скользить по прямой R= const (рис. 2). При X = 0 сопротивление Z вещественное, т.е. чисто резистивное и сдвиг фаз между током и напряжением  равен нулю.

Аналитический расчет токи в цепи по методу узловых напряжений

Метод узловы́х потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений , в которой неизвестными являются потенциалы в узлах цепи . В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким образом, число неизвестных потенциалов, а следовательно, и число уравнений равно

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений .

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов , примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Проверка баланса мощностей

Баланс мощностей является следствием закона сохранения энергии - суммарная мощность вырабатываемая (генерируемая) источниками электрической энергии равна сумме мощностей потребляемой в цепи.



Баланс мощностей используют для проверки правильности расчета электрических цепей.

Здесь мы рассмотрим баланс для цепей постоянного тока.

Например. У нас есть электрическая цепь.

Для проверки правильности решения составляем баланс мощностей.

Источники E1 и E2 вырабатывают электрическую энергию, т.к. направление ЭДС и тока в ветвях с источниками совпадают (если ЭДС и ток в ветвях направлены в противоположную сторону, то источник ЭДС потребляет энергию и его записывают со знаком минус ). Баланс мощностей для заданной цепи запишется так:

Выбор редакции
Технологии Новые идеи появляются каждый день. Одни из них остаются на бумаге, другие же получают зеленый свет - их тестируют и при...

Пояснительная записка Данное занятие было составлено и проведено к 69-летию победы, т. е., относится к лексической теме «День Победы»....

К сожалению, в школе нас не всегда этому учат. А ведь очень многих интересуют правила поведения в кругу друзей и в обществе малознакомых...

Одной из самых актуальных проблем для простых интернет-пользователей и владельцев сайтов / форумов является массовая рассылка . Со спамом...
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....
б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...
К огромному сожалению, такое явление, как повышенная нервная возбудимость, стало на сегодняшний день нормой. Эта проблема встречается как...
В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...
Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...