Теория по механике. Теоретическая и аналитическая механика


1. Основные понятия теоретической механики.

2. Cтруктура курса теоретической механики.

1. Механика (в широком смысле) - это наука о движении материальных тел в пространстве и времени. Она объединяет ряд дисциплин, объектами исследования которых являются твердые, жидкие и газообразные тела. Теоретическая механика , Теория упругости , Сопротивление материалов, Гидромеханика , Газовая динамика и Аэродинамика - вот далеко не полный перечень различных разделов механики.

Как видно из их названий, они отличаются друг от друга прежде всего объектами исследования. Изучением движения самых простых из них - твердых тел - занимается теоретическая механика. Простота изучаемых в теоретической механике объектов позволяет выявить наиболее общие законы движения, справедливые для всех материальных тел независимо от их конкретных физических свойств. Поэтому теоретическую механику можно рассматривать как основу общей механики.

2. Курс теоретической механики состоит из трех разделов : статики , кинематики и динамики .

В статике рассматривается общее учение о силах и выводятся условия равновесия для твердых тел.

В кинематике излагаются математические способы задания движения тел и выводятся формулы, определяющие основные характеристики этого движения (скорость, ускорение и т.п.).

В динамике по заданному движению определяют силы, вызывающие это движение и, наоборот, по заданным силам определяют как движется тело.

Материальной точкой называют геометрическую точку, обладающая массой.

Cистемой материальных точек называется такая их совокупность, в которой положение и движение каждой точки зависит от положения и движения всех остальных точек данной системы. Часто систему материальных точек называют механической системой . Частным случаем механической системы является абсолютно твердое тело.

Абсолютно твердым называется тело, у которого расстояние между любыми двумя точками всегда остается неизменным (т.е. это абсолютно прочное и недеформируемое тело).

Свободным называют твердое тело, движение которого не ограничено другими телами.

Несвободным называют тело, движение которого, так или иначе, ограничено другими телами. Последние в механике называются связями .

Силой называют меру механического действия одного тела на другое. Поскольку взаимодействие тел определяется не только своей интенсивностью, но и направлением - сила является величиной векторной и на чертежах изображается направленным отрезком (вектором). За единицу силы в системе СИ принят ньютон (Н) . Обозначают силы заглавными буквами латинского алфавита (А, Ы, З, Й...). Численные значения (или модули векторных величин) будем обозначать теми же буквами, но без верхних стрелок (F, S, P, Q ...).


Линией действия силы называется прямая, вдоль которой направлен вектор силы.

Системой сил называется любая конечная совокупность сил, действующих на механическую систему. Принято делить системы сил на плоские (все силы действуют в одной плоскости) и пространственные . Каждая из них, в свою очередь, может быть или произвольной или параллельной (линии действия всех сил параллельны) или системой сходящихся сил (линии действия всех сил пересекаются в одной точке).

Две системы сил называются эквивалентными , если их действия на механическую систему одинаково (т.е. замена одной системы сил на другую не изменяет характера движения механической системы).

Если некоторая система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил. Отметим, что далеко не всякая система сил имеет равнодействующую. Сила, равная равнодействующей по величине, противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

Система сил, под действием которой свободное твердое тело находится в покое или движется равномерно и прямолинейно, называется уравновешенной или эквивалентной нулю.

Внутренними силами называют силы взаимодействия между материальными точками одной механической системы.

Внешние силы - это силы взаимодействия точек данной механической системы с материальными точками другой системы.

Сила, приложенная к телу в какой-либо одной его точке, называется сосредоточенной .

Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными (по объему и по поверхности соответственно).

Приведенный выше перечень основных понятий не является исчерпывающим. Остальные, не менее важные понятия будут вводиться и уточняться в процессе изложения материала курса.

Статика - это раздел теоретической механики, в котором изучаются условия равновесия материальных тел, находящихся под действием сил.

Под состоянием равновесия, в статике, понимается состояние, при котором все части механической системы покоятся (относительно неподвижной системы координат). Хотя методы статики применимы и к движущимся телам, и с их помощью можно изучать задачи динамики, но базовыми объектами изучения статики являются неподвижные механические тела и системы.

Сила - это мера воздействия одного тела на другое. Сила - это вектор, имеющий точку приложения на поверхности тела. Под действием силы, свободное тело получает ускорение, пропорциональное вектору силы и обратно пропорциональное массе тела.

Закон равенства действия и противодействия

Сила, с которой первое тело действует на второе, равна по абсолютной величине и противоположна по направлению силе, с которой второе тело действует на первое.

Принцип отвердевания

Если деформируемое тело находится в равновесии, то его равновесие не нарушится, если тело считать абсолютно твердым.

Статика материальной точки

Рассмотрим материальную точку, которая находится в равновесии. И пусть на нее действуют n сил , k = 1, 2, ..., n .

Если материальная точка находится в равновесии, то векторная сумма действующих на нее сил равна нулю:
(1) .

В равновесии геометрическая сумма сил, действующих на точку, равна нулю.

Геометрическая интерпретация . Если в конец первого вектора поместить начало второго вектора , а в конец второго вектора поместить начало третьего , и далее продолжать этот процесс, то конец последнего, n -го вектора окажется совмещенным с началом первого вектора. То есть мы получим замкнутую геометрическую фигуру, длины сторон которой равны модулям векторов . Если все векторы лежат в одной плоскости, то мы получим замкнутый многоугольник.

Часто бывает удобным выбрать прямоугольную систему координат Oxyz . Тогда суммы проекций всех векторов сил на оси координат равны нулю:

Если выбрать любое направление, задаваемое некоторым вектором , то сумма проекций векторов сил на это направление равна нулю:
.
Умножим уравнение (1) скалярно на вектор :
.
Здесь - скалярное произведение векторов и .
Заметим, что проекция вектора на направление вектора определяется по формуле:
.

Статика твердого тела

Момент силы относительно точки

Определение момента силы

Моментом силы , приложенной к телу в точке A , относительно неподвижного центра O , называется вектор , равный векторному произведению векторов и :
(2) .

Геометрическая интерпретация

Момент силы равен произведению силы F на плечо OH.

Пусть векторы и расположены в плоскости рисунка. Согласно свойству векторного произведения, вектор перпендикулярен векторам и , то есть перпендикулярен плоскости рисунка. Его направление определяется правилом правого винта. На рисунке вектор момента направлен на нас. Абсолютное значение момента:
.
Поскольку , то
(3) .

Используя геометрию, можно дать другую интерпретацию момента силы. Для этого проведем прямую AH через вектор силы . Из цента O опустим перпендикуляр OH на эту прямую. Длину этого перпендикуляра называют плечом силы . Тогда
(4) .
Поскольку , то формулы (3) и (4) эквивалентны.

Таким образом, абсолютное значение момента силы относительно центра O равно произведению силы на плечо этой силы относительно выбранного центра O .

При вычислении момента часто бывает удобным разложить силу на две составляющие:
,
где . Сила проходит через точку O . Поэтому ее момент равен нулю. Тогда
.
Абсолютное значение момента:
.

Компоненты момента в прямоугольной системе координат

Если выбрать прямоугольную систему координат Oxyz с центром в точке O , то момент силы будет иметь следующие компоненты:
(5.1) ;
(5.2) ;
(5.3) .
Здесь - координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Свойства момента силы относительно центра

Момент относительно центра O , от силы, проходящей через этот центр, равен нулю.

Если точку приложения силы переместить вдоль линии, проходящей через вектор силы, то момент, при таком перемещении, не изменится.

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. В этом случае, за точку приложения сил следует брать их точку пересечения.

Если векторная сумма сил равна нулю:
,
то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:
.

Пара сил

Пара сил - это две силы, равные по абсолютной величине и имеющие противоположные направления, приложенные к разным точкам тела.

Пара сил характеризуется моментом , который они создают. Поскольку векторная сумма сил, входящих в пару равна нулю, то создаваемый парой момент не зависит от точки, относительно которой вычисляется момент. С точки зрения статического равновесия, природа сил, входящих в пару, не имеет значения. Пару сил используют для того, чтобы указать, что на тело действует момент сил, имеющий определенное значение .

Момент силы относительно заданной оси

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Моментом силы относительно оси, проходящей через точку O - это проекция вектора момента силы, относительно точки O , на направление оси.

Свойства момента силы относительно оси

Момент относительно оси от силы, проходящей через эту ось равен нулю.

Момент относительно оси от силы, параллельной этой оси равен нулю.

Вычисление момента силы относительно оси

Пусть на тело, в точке A действует сила . Найдем момент этой силы относительно оси O′O′′ .

Построим прямоугольную систему координат. Пусть ось Oz совпадает с O′O′′ . Из точки A опустим перпендикуляр OH на O′O′′ . Через точки O и A проводим ось Ox . Перпендикулярно Ox и Oz проводим ось Oy . Разложим силу на составляющие вдоль осей системы координат:
.
Сила пересекает ось O′O′′ . Поэтому ее момент равен нулю. Сила параллельна оси O′O′′ . Поэтому ее момент также равен нулю. По формуле (5.3) находим:
.

Заметим, что компонента направлена по касательной к окружности, центром которой является точка O . Направление вектора определяется правилом правого винта.

Условия равновесия твердого тела

В равновесии векторная сумма всех действующих на тело сил равна нулю и векторная сумма моментов этих сил относительно произвольного неподвижного центра равна нулю:
(6.1) ;
(6.2) .

Подчеркнем, что центр O , относительно которого вычисляются моменты сил можно выбирать произвольным образом. Точка O может, как принадлежать телу, так и находится за его пределами. Обычно центр O выбирают так, чтобы сделать вычисления более простыми.

Условия равновесия можно сформулировать и другим способом.

В равновесии сумма проекций сил на любое направление, задаваемое произвольным вектором , равна нулю:
.
Также равна нулю сумма моментов сил относительно произвольной оси O′O′′ :
.

Иногда такие условия оказываются более удобными. Бывают случаи, когда за счет выбора осей, можно сделать вычисления более простыми.

Центр тяжести тела

Рассмотрим одну из важнейших сил - силу тяжести. Здесь силы не приложены в определенных точках тела, а непрерывно распределены по его объему. На каждый участок тела с бесконечно малым объемом Δ V , действует сила тяготения . Здесь ρ - плотность вещества тела, - ускорение свободного падения.

Пусть - масса бесконечно малого участка тела. И пусть точка A k определяет положение этого участка. Найдем величины, относящиеся к силе тяжести, которые входят в уравнения равновесия (6).

Найдем сумму сил тяжести, образованную всеми участками тела:
,
где - масса тела. Таким образом, сумму сил тяжести отдельных бесконечно малых участков тела можно заменить одним вектором силы тяжести всего тела:
.

Найдем сумму моментов сил тяжести, относительно произвольным способом выбранного центра O :

.
Здесь мы ввели точку C , которая называется центром тяжести тела. Положение центра тяжести, в системе координат с центром в точке O , определяется по формуле:
(7) .

Итак, при определении статического равновесия, сумму сил тяжести отдельных участков тела можно заменить равнодействующей
,
приложенной к центру масс тела C , положение которого определяется формулой (7).

Положение центра тяжести для различных геометрических фигур можно найти в соответствующих справочниках. Если тело имеет ось или плоскость симметрии, то центр тяжести расположен на этой оси или плоскости. Так, центры тяжести сферы, окружности или круга находятся в центрах окружностей этих фигур. Центры тяжести прямоугольного параллелепипеда, прямоугольника или квадрата также расположены в их центрах - в точках пересечения диагоналей.

Равномерно (А) и линейно (Б) распределенная нагрузка.

Также встречаются подобные силе тяжести случаи, когда силы не приложены в определенных точках тела, а непрерывно распределены по его поверхности или объему. Такие силы называют распределенными силами или .

(рисунок А). Также, как и в случае с силой тяжести, ее можно заменить равнодействующей силой величины , приложенной в центре тяжести эпюры. Поскольку на рисунке А эпюра представляет собой прямоугольник, то центр тяжести эпюры находится в ее центре - точке C : | AC| = | CB| .

(рисунок В). Ее также можно заменить равнодействующей. Величина равнодействующей равна площади эпюры:
.
Точка приложения находится в центре тяжести эпюры. Центр тяжести треугольника, высотой h , находится на расстоянии от основания. Поэтому .

Силы трения

Трение скольжения . Пусть тело находится на плоской поверхности. И пусть - сила, перпендикулярная поверхности, с которой поверхность действует на тело (сила давления). Тогда сила трения скольжения параллельна поверхности и направлена в сторону, препятствуя движению тела. Ее наибольшая величина равна:
,
где f - коэффициент трения. Коэффициент трения является безразмерной величиной.

Трение качения . Пусть тело округлой формы катится или может катиться по поверхности. И пусть - сила давления, перпендикулярная поверхности, с которой поверхность действует на тело. Тогда на тело, в точке соприкосновения с поверхностью, действует момент сил трения, препятствующий движению тела. Наибольшая величина момента трения равна:
,
где δ - коэффициент трения качения. Он имеет размерность длины.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Во всей красе и элегантности. С ее помощью Ньютон когда-то вывел на основе трех эмпирических законов Кеплера свой закон всемирного тяготения. Предмет, в общем-то, не такой сложный, понять относительно легко. Но вот сдать - сложно, так как нередко преподы бывают до ужаса придирчивыми (как Павлова , например). При решении задач нужно уметь решать диффуры и вычислять интегралы.

Основные идеи

По сути, теормех в рамках этого курса представляет собой применение вариационного принципа для расчёта "движения" разных физических систем. Вариационное исчисление кратко рассматривается в курсе Интегральные уравнения и вариационное исчисление . Уравнения Лагранжа - это уравнения Эйлера, являющиеся решением задачи с закрепленными концами .

Одна задача обычно может решаться сразу 3 разными методами:

  • Метод Лагранжа (функция Лагранжа, уравнения Лагранжа)
  • Метод Гамильтона (функция Гамильтона, уравнения Гамильтона)
  • Метод Гамильтона-Якоби (уравнение Гамильтона-Якоби)

Важно выбрать самый простой из них для конкретной задачи.

Материалы

Первый семестр (зачет)

Основные формулы

Смотреть в большом размере!

Теория

Видеозаписи

Лекций В.Р. Халилова - Attention! записаны не все лекции

Второй семестр (экзамен)

Начать надо с того, что у разных групп экзамен проходит по-разному. Обычно экзаменационный билет состоит из 2-х теор.вопросов и 1-ой задачи. Вопросы обязательны для всех, а вот от задачи можно как избавиться (за прекрасную работу в семестре + написанные контрольные), так и отхватить лишнюю (и не одну). Здесь уже о правилах игры вам расскажут на семинарах. В группах Павловой и Пименова практикуется теормин, который является своеобразным допуском к экзамену. Отсюда следует, что этот теормин надо знать идеально.

Экзамен в группах Павловой проходит примерно так: Для начала билет с 2-мя вопросами термина. На написание есть немного времени, и ключ тут - абсолютно идеально его написать. Тогда Ольга Серафимовна к вам добреет и остальной экзамен проходит очень приятно. Далее билет с 2-мя вопросами по теории + n задач (в зависимости от вашей работы в семестре). Теорию в теории можно списать. Задачи решить. Много задач на экзамене - еще не конец, если вы их прекрасно умеете решать. Это можно превратить в преимущество - за каждый пункт экзамена вы получаете +, +-, -+ или -. Оценка выставляется "по общему впечатлению" => если в теории у вас не все идеально, но потом идет 3 + за задачи, то общее впечатление хорошее. А вот если вы были без задач на экзамене и теория не идеальная, то сгладить это уже нечем.

Теория

  • Юлия. Конспект лекций (2014, pdf) - оба семестра, 2-ой поток
  • Второй поток билеты часть 1 (конспекты лекций и часть для билетов) (pdf)
  • Второй поток билеты и оглавление ко всем этим частям (pdf)
  • Ответы на билеты 1 потока (2016, pdf) - в печатном виде, очень удобно
  • Распознанный теормин к экзамену для групп Пименова (2016, pdf) - оба семестра
  • Ответы на теормин для групп Пименова (2016, pdf) - аккуратные и вроде без ошибок

Задачи

  • Семинары Павловой 2-ой семестр (2015, pdf) - аккуратные, красиво и понятно написанные
  • Задачи, которые могут быть на экзамене (jpg) - когда-то в каком-то лохматом году были на 2-м потоке, также могут быть актуальны для групп В.Р. Халилова (похожие задачи он дает на кр)
  • Задачи к билетам (pdf) - для обоих потоков (на 2-м потоке эти задачи были в группах А.Б. Пименова)

В рамках любого учебного курса изучение физики начинается с механики. Не с теоретической, не с прикладной и не вычислительной, а со старой доброй классической механики. Эту механику еще называют механикой Ньютона. По легенде, ученый гулял по саду, увидел, как падает яблоко, и именно это явление подтолкнуло его к открытию закона всемирного тяготения. Конечно, закон существовал всегда, а Ньютон лишь придал ему понятную для людей форму, но его заслуга – бесценна. В данной статье мы не будем расписывать законы Ньютоновской механики максимально подробно, но изложим основы, базовые знания, определения и формулы, которые всегда могут сыграть Вам на руку.

Механика – раздел физики, наука, изучающая движение материальных тел и взаимодействия между ними.

Само слово имеет греческое происхождение и переводится как «искусство построения машин» . Но до построения машин нам еще как до Луны, поэтому пойдем по стопам наших предков, и будем изучать движение камней, брошенных под углом к горизонту, и яблок, падающих на головы с высоты h.


Почему изучение физики начинается именно с механики? Потому что это совершенно естественно, не с термодинамического же равновесия его начинать?!

Механика – одна из старейших наук, и исторически изучение физики началось именно с основ механики. Помещенные в рамки времени и пространства, люди, по сути, никак не могли начать с чего-то другого, при всем желании. Движущиеся тела – первое, на что мы обращаем свое внимание.

Что такое движение?

Механическое движение – это изменение положения тел в пространстве относительно друг друга с течением времени.

Именно после этого определения мы совершенно естественно приходим к понятию системы отсчета. Изменение положения тел в пространстве относительно друг друга. Ключевые слова здесь: относительно друг друга . Ведь пассажир в машине движется относительно стоящего на обочине человека с определенной скоростью, и покоится относительно своего соседа на сиденье рядом, и движется с какой-то другой скоростью относительно пассажира в машине, которая их обгоняет.


Именно поэтому, для того, чтобы нормально измерять параметры движущихся объектов и не запутаться, нам нужна система отсчета - жестко связанные между собой тело отсчета, система координат и часов. Например, земля движется вокруг солнца в гелиоцентрической системе отсчета. В быту практически все свои измерения мы проводим в геоцентрической системе отсчета, связанной с Землей. Земля – тело отсчета, относительно которого движутся машины, самолеты, люди, животные.


Механика, как наука, имеет свою задачу. Задача механики – в любой момент времени знать положение тела в пространстве. Иными словами, механика строит математическое описание движения и находит связи между физическими величинами, его характеризующими.

Для того, чтобы двигаться далее, нам понадобится понятие “материальная точка ”. Говорят, физика – точная наука, но физикам известно, сколько приближений и допущений приходится делать, чтобы согласовать эту самую точность. Никто никогда не видел материальной точки и не нюхал идеального газа, но они есть! С ними просто гораздо легче жить.

Материальная точка – тело, размерами и формой которого в контексте данной задачи можно пренебречь.

Разделы классической механики

Механика состоит из нескольких разделов

  • Кинематика
  • Динамика
  • Статика

Кинематика с физической точки зрения изучает, как именно тело движется. Другими словами, этот раздел занимается количественными характеристиками движения. Найти скорость, путь – типичные задачи кинематики

Динамика решает вопрос, почему оно движется именно так. То есть, рассматривает силы, действующие на тело.

Статика изучает равновесие тел под действием сил, то есть отвечает на вопрос: а почему оно вообще не падает?

Границы применимости классической механики.

Классическая механика уже не претендует на статус науки, объясняющей все (в начале прошлого века все было совершенно иначе), и имеет четкие рамки применимости. Вообще, законы классической механики справедливы привычном нам по размеру мире (макромир). Они перестают работать в случае мира частиц, когда на смену классической приходит квантовая механика. Также классическая механика неприменима к случаям, когда движение тел происходит со скоростью, близкой к скорости света. В таких случаях ярко выраженными становятся релятивистские эффекты. Грубо говоря, в рамках квантовой и релятивистской механики – классическая механика, это частный случай, когда размеры тела велики, а скорость – мала. Подробнее об вы можете узнать из нашей статьи.


Вообще говоря, квантовые и релятивистские эффекты никогда никуда не деваются, они имеют место быть и при обычном движении макроскопических тел со скоростью, много меньшей скорости света. Другое дело, что действие этих эффектов так мало, что не выходит за рамки самых точных измерений. Классическая механика, таким образом, никогда не потеряет своей фундаментальной важности.

Мы продолжим изучение физических основ механики в следующих статьях. Для лучшего понимания механики Вы всегда можете обратиться к , которые в индивидуальном порядке прольют свет на темное пятно самой сложной задачи.

Поиск в библиотеке по авторам и ключевым словам из названия книги:

Теоретическая и аналитическая механика

  • Айзенберг Т.Б., Воронков И.М., Осецкий В.М.. Руководство к решению задач по теоретической механике (6-е издание). М.: Высшая школа, 1968 (djvu)
  • Айзерман М.А. Классическая механика (2-е изд.). М.: Наука, 1980 (djvu)
  • Алешкевич В.А., Деденко Л.Г., Караваев В.А. Механика твердого тела. Лекции. М.: Физфак МГУ, 1997 (djvu)
  • Амелькин Н.И. Кинематика и динамика твердого тела, МФТИ, 2000 (pdf)
  • Аппель П. Теоретическая механика. Том 1. Статистика. Динамика точки. М.: Физматлит, 1960 (djvu)
  • Аппель П. Теоретическая механика. Том 2. Динамика системы. Аналитическая механика. М.: Физматлит, 1960 (djvu)
  • Арнольд В.И. Малые знаменатели и проблемы устойчивости движения в классической и небесной механике. Успехи математических наук т. XVIII, вып. 6 (114), с91-192, 1963 (djvu)
  • Арнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики. М.: ВИНИТИ, 1985 (djvu)
  • Баринова М.Ф., Голубева О.В. Задачи и упражнения по классической механике. М.: Высш. школа, 1980 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 1: Статика и кинематика (5-е издание). М.: Наука, 1967 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 2: Динамика (3-е издание). М.: Наука, 1966 (djvu)
  • Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Том 3: Специальные главы мехники. М.: Наука, 1973 (djvu)
  • Бекшаев С.Я., Фомин В.М. Основы теории колебаний. Одесса: ОГАСА, 2013 (pdf)
  • Беленький И.М. Введение в аналитическую механику. М.: Высш. школа, 1964 (djvu)
  • Березкин Е.Н. Курс теоретической механики (2-е изд.). М.: Изд. МГУ, 1974 (djvu)
  • Березкин Е.Н. Теоретическая механика. Методические указания (3-е изд.). М.: Изд. МГУ, 1970 (djvu)
  • Березкин Е.Н. Решение задач по теоретической механике, часть 1. М.: Изд. МГУ, 1973 (djvu)
  • Березкин Е.Н. Решение задач по теоретической механике, часть 2. М.: Изд. МГУ, 1974 (djvu)
  • Березова О.А., Друшляк Г.Е., Солодовников Р.В. Теоретическая механика. Сборник задач. Киев: Вища школа, 1980 (djvu)
  • Бидерман В.Л. Теория механических колебаний. М.: Высш. школа, 1980 (djvu)
  • Боголюбов Н.Н., Митропольский Ю.А., Самойленко А.М. Метод ускоренной сходимости в нелинейной механике. Киев: Наук. думка, 1969 (djvu)
  • Бражниченко Н.А., Кан В.Л. и др. Сборник задач по теоретической механике (2-е издание). М.: Высшая школа, 1967 (djvu)
  • Бутенин Н.В. Введение в аналитическую механику. М.: Наука, 1971 (djvu)
  • Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики. Том 1. Статика и кинематика (3-е издание). М.: Наука, 1979 (djvu)
  • Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики. Том 2. Динамика (2-е издание). М.: Наука, 1979 (djvu)
  • Бухгольц Н.Н. Основной курс теоретической механики. Том 1: Кинематика, статика, динамика материальной точки (6-е издание). М.: Наука, 1965 (djvu)
  • Бухгольц Н.Н. Основной курс теоретической механики. Том 2: Динамика системы материальных точек (4-е издание). М.: Наука, 1966 (djvu)
  • Бухгольц Н.Н., Воронков И.М., Минаков А.П. Сборник задач по теоретической механике (3-е издание). М.-Л.: ГИТТЛ, 1949 (djvu)
  • Валле-Пуссен Ш.-Ж. Лекции по теоретической механике, том 1. М.: ГИИЛ, 1948 (djvu)
  • Валле-Пуссен Ш.-Ж. Лекции по теоретической механике, том 2. М.: ГИИЛ, 1949 (djvu)
  • Вебстер А.Г. Механика материальных точек твердых, упругих и жидких тел (лекции по математической физике). Л.-М.: ГТТИ, 1933 (djvu)
  • Веретенников В.Г., Синицын В.А. Метод переменного действия (2-е издание). М.: Физматлит, 2005 (djvu)
  • Веселовский И.Н. Динамика. М.-Л.: ГИТТЛ, 1941 (djvu)
  • Веселовский И.Н. Сборник задач по теоретической механике. М.: ГИТТЛ, 1955 (djvu)
  • Виттенбург Й. Динамика систем твердых тел. М.: Мир, 1980 (djvu)
  • Воронков И.М. Курс теоретической механики (11-е издание). М.: Наука, 1964 (djvu)
  • Ганиев Р.Ф., Кононенко В.О. Колебания твердых тел. М.: Наука, 1976 (djvu)
  • Гантмахер Ф.Р. Лекции по аналитической механике. М.: Наука, 1966 (2-е издание) (djvu)
  • Гернет М.М. Курс теоретической механики. М.: Высш.школа (3-е издание), 1973 (djvu)
  • Геронимус Я.Л. Теоретическая механика (очерки об основных положениях). М.: Наука, 1973 (djvu)
  • Герц Г. Принципы механики, изложенные в новой связи. М.: АН СССР, 1959 (djvu)
  • Голдстейн Г. Классическая механика. М.: Гостехиздат, 1957 (djvu)
  • Голубева О.В. Теоретическая механика. М.: Высш. школа, 1968 (djvu)
  • Диментберг Ф.М. Винтовое исчисление и его приложения в механике. М.: Наука, 1965 (djvu)
  • Добронравов В.В. Основы аналитической механики. М.: Высшая школа, 1976 (djvu)
  • Жирнов Н.И. Классическая механика. М.: Просвещение, 1980 (djvu)
  • Жуковский Н.Е. Теоретическая механика (2-е издание). М.-Л.: ГИТТЛ, 1952 (djvu)
  • Журавлев В.Ф. Основания механики. Методические аспекты. М.: Институт проблем механики РАН (препринт N 251), 1985 (djvu)
  • Журавлев В.Ф. Основы теоретической механики (2-е издание). М.: Физматлит, 2001 (djvu)
  • Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988 (djvu)
  • Зубов В.И., Ермолин В.С. и др. Динамика свободного твердого тела и определение его ориентации в пространстве. Л.: ЛГУ, 1968 (djvu)
  • Зубов В.Г. Механика. Серия "Начала физики". М.: Наука, 1978 (djvu)
  • История механики гироскопических систем. М.: Наука, 1975 (djvu)
  • Ишлинский А.Ю. (ред.). Теоретическая механика. Буквенные обозначения величин. Вып. 96. М: Наука, 1980 (djvu)
  • Ишлинский А.Ю., Борзов В.И., Степаненко Н.П. Сборник задач и упражнений по теории гироскопов. М.: Изд-во МГУ, 1979 (djvu)
  • Кабальский М.М., Кривошей В.Д., Савицкий Н.И., Чайковский Г.Н. Типовые задачи по теоретической механике и методы их решения. Киев: ГИТЛ УССР, 1956 (djvu)
  • Кильчевский Н.А. Курс теоретической механики, т.1: кинематика, статика, динамика точки, (2-е изд.), М.: Наука, 1977 (djvu)
  • Кильчевский Н.А. Курс теоретической механики, т.2: динамика системы, аналитическая механика, элементы теории потенциала, мехаиики сплошной среды, специальной и общей теории относительности, М.: Наука, 1977 (djvu)
  • Кирпичев В.Л. Беседы о механике. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Климов Д.М. (ред.). Проблемы механики: Сб. статей. К 90-летию со дня рождения А. Ю. Ишлинского. М.: Физматлит, 2003 (djvu)
  • Козлов В.В. Методы качественного анализа в динамике твердого тела (2-е изд.). Ижевск: НИЦ "Регулярная и хаотическая динамика", 2000 (djvu)
  • Козлов В.В. Симметрии, топология и резонансы в гамильтоновой механике. Ижевск: Изд-во Удмуртского гос. университета, 1995 (djvu)
  • Космодемьянский А.А. Курс теоретической механики. Часть I. М.: Просвещение, 1965 (djvu)
  • Космодемьянский А.А. Курс теоретической механики. Часть II. М.: Просвещение, 1966 (djvu)
  • Коткин Г.Л., Сербо В.Г. Сборник задач по классической механике (2-е изд.). М.: Наука, 1977 (djvu)
  • Крагельский И.В., Щедров В.С. Развитие науки о трении. Сухое трение. М.: АН СССР, 1956 (djvu)
  • Лагранж Ж. Аналитическая механика, том 1. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Лагранж Ж. Аналитическая механика, том 2. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Ламб Г. Теоретическая механика. Том 2. Динамика. М.-Л.: ГТТИ, 1935 (djvu)
  • Ламб Г. Теоретическая механика. Том 3. Более сложные вопросы. М.-Л.: ОНТИ, 1936 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 1, часть 1: Кинематика, принципы механики. М.-Л.: НКТЛ СССР, 1935 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 1, часть 2: Кинематика, принципы механики, статика. М.: Из-во иностр. литературы, 1952 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 2, часть 1: Динамика систем с конечным числом степеней свободы. М.: Из-во иностр. литературы, 1951 (djvu)
  • Леви-Чивита Т., Амальди У. Курс теоретической механики. Том 2, часть 2: Динамика систем с конечным числом степеней свободы. М.: Из-во иностр. литературы, 1951 (djvu)
  • Лич Дж.У. Классическая механика. М.: Иностр. литература, 1961 (djvu)
  • Лунц Я.Л. Введение в теорию гироскопов. М.: Наука, 1972 (djvu)
  • Лурье А.И. Аналитическая механика. М.: ГИФМЛ, 1961 (djvu)
  • Ляпунов А.М. Общая задача об устойчивости движения. М.-Л.: ГИТТЛ, 1950 (djvu)
  • Маркеев А.П. Динамика тела, соприкасающегося с твердой поверхностью. М.: Наука, 1992 (djvu)
  • Маркеев А.П. Теоретическая механика, 2-е издание. Ижевск: РХД, 1999 (djvu)
  • Мартынюк А.А. Устойчивость движения сложных систем. Киев: Наук. думка, 1975 (djvu)
  • Меркин Д.Р. Введение в механику гибкой нити. М.: Наука, 1980 (djvu)
  • Механика в СССР за 50 лет. Том 1. Общая и прикладная механика. М.: Наука, 1968 (djvu)
  • Метелицын И.И. Теория гироскопа. Теория устойчивости. Избранные труды. М.: Наука, 1977 (djvu)
  • Мещерский И.В. Сборник задач по теоретической механике (34-е издание). М.: Наука, 1975 (djvu)
  • Мисюрев М.А. Методика решения задач по теоретической механике. М.: Высшая школа, 1963 (djvu)
  • Моисеев Н.Н. Асимптотические методы нелинейной механики. М.: Наука, 1969 (djvu)
  • Неймарк Ю.И., Фуфаев Н.А. Динамика неголономных систем. М.: Наука, 1967 (djvu)
  • Некрасов А.И. Курс теоретической механики. Том 1. Статика и кинематика (6-е изд.) М.: ГИТТЛ, 1956 (djvu)
  • Некрасов А.И. Курс теоретической механики. Том 2. Динамика (2-е изд.) М.: ГИТТЛ, 1953 (djvu)
  • Николаи Е.Л. Гироскоп и некоторые его технические применения в общедоступном изложении. М.-Л.: ГИТТЛ, 1947 (djvu)
  • Николаи Е.Л. Теория гироскопов. Л.-М.: ГИТТЛ, 1948 (djvu)
  • Николаи Е.Л. Теоретическая механика. Часть I. Статика. Кинематика (издание двадцатое). М.: ГИФМЛ, 1962 (djvu)
  • Николаи Е.Л. Теоретическая механика. Часть II. Динамика (издание тринадцатое). М.: ГИФМЛ, 1958 (djvu)
  • Новоселов В.С. Вариационные методы в механике. Л.: Изд-во ЛГУ, 1966 (djvu)
  • Ольховский И.И. Курс теоретической механики для физиков. М.: МГУ, 1978 (djvu)
  • Ольховский И.И., Павленко Ю.Г., Кузьменков Л.С. Задачи по теоретической механике для физиков. М.: МГУ, 1977 (djvu)
  • Парс Л.А. Аналитическая динамика. М.: Наука, 1971 (djvu)
  • Перельман Я.И. Занимательная механика (4-е издание). М.-Л.: ОНТИ, 1937 (djvu)
  • Планк М. Введение в теоретическую физику. Часть первая. Общая механика (2-е издание). М.-Л.: ГТТИ, 1932 (djvu)
  • Полак Л.С. (ред.) Вариационные принципы механики. Сборник статей классиков науки. М.: Физматгиз, 1959 (djvu)
  • Пуанкаре А. Лекции по небесной механике. М.: Наука, 1965 (djvu)
  • Пуанкаре А. Новая механика. Эволюция законов. М.: Современные проблемы: 1913 (djvu)
  • Розе Н.В. (ред.) Теоретическая механика. Часть 1. Механика материальной точки. Л.-М.: ГТТИ, 1932 (djvu)
  • Розе Н.В. (ред.) Теоретическая механика. Часть 2. Механика материальной системы и твердого тела. Л.-М.: ГТТИ, 1933 (djvu)
  • Розенблат Г.М. Сухое трение в задачах и решениях. М.-Ижевск: РХД, 2009 (pdf)
  • Рубановский В.Н., Самсонов В.А. Устойчивость стационарных движений в примерах и задачах. М.-Ижевск: РХД, 2003 (pdf)
  • Самсонов В.А. Конспект лекций по механике. М.: МГУ, 2015 (pdf)
  • Сахарный Н.Ф. Курс теоретической механики. М.: Высш. школа, 1964 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 1. М.: Высш. школа, 1968 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 2. М.: Высш. школа, 1971 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 3. М.: Высш. школа, 1972 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 4. М.: Высш. школа, 1974 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 5. М.: Высш. школа, 1975 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 6. М.: Высш. школа, 1976 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 7. М.: Высш. школа, 1976 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 8. М.: Высш. школа, 1977 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 9. М.: Высш. школа, 1979 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 10. М.: Высш. школа, 1980 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 11. М.: Высш. школа, 1981 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 12. М.: Высш. школа, 1982 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 13. М.: Высш. школа, 1983 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 14. М.: Высш. школа, 1983 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 15. М.: Высш. школа, 1984 (djvu)
  • Сборник научно-методических статей по теоретической механике. Выпуск 16. М.: Высш. школа, 1986
Выбор редакции
Технологии Новые идеи появляются каждый день. Одни из них остаются на бумаге, другие же получают зеленый свет - их тестируют и при...

Пояснительная записка Данное занятие было составлено и проведено к 69-летию победы, т. е., относится к лексической теме «День Победы»....

К сожалению, в школе нас не всегда этому учат. А ведь очень многих интересуют правила поведения в кругу друзей и в обществе малознакомых...

Одной из самых актуальных проблем для простых интернет-пользователей и владельцев сайтов / форумов является массовая рассылка . Со спамом...
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....
б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...
К огромному сожалению, такое явление, как повышенная нервная возбудимость, стало на сегодняшний день нормой. Эта проблема встречается как...
В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...
Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...