Что такое частота колебаний? Гармонические колебания. Амплитуда, период и частота колебаний Частота колебаний определяется по формуле


(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T {\displaystyle T} (хотя могут применяться и другие, наиболее часто это τ {\displaystyle \tau } , иногда Θ {\displaystyle \Theta } и т. д.).

T = 1 ν , ν = 1 T . {\displaystyle T={\frac {1}{\nu }},\ \ \ \nu ={\frac {1}{T}}.}

Для волновых процессов период связан кроме того очевидным образом с длиной волны λ {\displaystyle \lambda }

v = λ ν , T = λ v , {\displaystyle v=\lambda \nu ,\ \ \ T={\frac {\lambda }{v}},}

где v {\displaystyle v} - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры, осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решётки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

От 5·10 −5 до 0,2

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

От 1,1·10 −15 до 2,3·10 −15 .

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Пружинный маятник

Математический маятник

T = 2 π l g {\displaystyle T=2\pi {\sqrt {\frac {l}{g}}}}

где l {\displaystyle l} - длина подвеса (к примеру, нити), g {\displaystyle g} - ускорение свободного падения .

Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

Физический маятник

T = 2 π J m g l {\displaystyle T=2\pi {\sqrt {\frac {J}{mgl}}}}

где J {\displaystyle J} - момент инерции маятника относительно оси вращения, m {\displaystyle m} - масса маятника, l {\displaystyle l} - расстояние от оси вращения до

Цели урока:

  • познакомить учащихся с величинами, характеризующими колебательное движение: амплитуда, частота, период, фаза колебаний;
  • формировать умения анализировать, сравнивать явления, выделять основное, устанавливать связи между элементами содержания ранее изученного материала;
  • научить применять свои знания для решения учебных задач различного характера;
  • показать значимость данной темы и связь ее с другими науками;
  • развивать умения работы с дополнительной литературой, учебником;
  • воспитывать самостоятельность, трудолюбие, терпимость к мнению другого, прививать культуру умственного труда и интерес к предмету.

Тип урока: изучение нового материала.

Оборудование: нитяные маятники, презентация.

Ход урока

1. Орг. момент. Сообщение учащимся целей и задач урока.

2. Проверка домашнего задания:

Фронтальная беседа.

  • какое движение называется колебательным?
  • какие колебания называют свободными?
  • что такое колебательная система?
  • что называется маятником? Виды маятников.
  • примеры колебательных движений в природе.

3. Новая тема.

Слайд №1. Всюду в нашей жизни мы встречаемся с колебательными движениями: периодически движутся участки сердца и легких, колеблются ветви деревьев при порыве ветра, ноги и руки при ходьбе, колеблются струны гитар, колеблется спортсмен на батуте и школьник, пытающийся подтянуться на перекладине, пульсируют звезды (будто дышат), а возможно и вся Вселенная, колеблются атомы в узлах кристаллической решетки… Остановимся! На прошлом уроке мы начали знакомство с колебательным движением, а сегодня познакомимся с характеристиками этого движения.

Эксперимент №1 с маятниками. Сравним колебания двух одинаковых маятников. Первый маятник колеблется с большим размахом, т. е. его крайние положения находятся дальше от положения равновесия, чем у второго маятника. Слайд №2.

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

Мы будем рассматривать колебания, происходящие с малыми амплитудами.

Обычно амплитуду обозначают буквой А и измеряют в единицах длины - метрах (м), сантиметрах (см) и др. Амплитуду можно измерять также в единицах плоского угла, например в градусах, поскольку дуге окружности соответствует определенный центральный угол, т. е. угол с вершиной в центре окружности (в данном случае в точке О).

Амплитуда колебаний пружинного маятника (см. рис. 49 ) равна длине отрезка ОВ или ОА.

Если колеблющееся тело пройдет от начала колебаний путь, равный четырем амплитудам, то оно совершит одно полное колебание.

Слайд №3. Пример, амплитуда колебаний вершины Останкинской башни в Москве (высота 540 м) при сильном ветре около 2,5 м.

Слайд №4. Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в СИ измеряется в секундах (с).

Эксперимент №2. Подвесим к стойке два маятника - один длинный, другой короткий. Отклоним их от положения равновесия на одно и то же расстояние и отпустим. Мы заметим, что по сравнению с длинным маятником короткий за то же время совершает большее число колебаний.

Число колебаний в единицу времени называется частотой колебаний.

Обозначается частота буквой v (“ню”). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого ученого Генриха Герца названа герцем (Гц).

Если, например, маятник в одну секунду совершает 2 колебания, то частота его колебаний равна 2 Гц (или 2 с -1), а период колебаний (т. е. время одного полного колебания) равен 0,5 с. Чтобы определить период колебания, необходимо одну секунду разделить на число колебаний в эту секунду, т. е. на частоту.

Таким образом, период колебания Т и частота колебаний v связаны следующей зависимостью:

Т=1/ или =1/Т.

На примере колебаний маятников разной длины приходим к выводу: частота и период свободных колебаний нитяного маятника зависят от длины его нити. Чем больше длина нити маятника, тем больше период колебаний и меньше частота. (Эту зависимость вы будете исследовать при выполнении лабораторной работы № 3.)

Частота свободных колебаний называется собственной частотой колебательной системы.

Не только нитяной маятник, но и любая другая колебательная система имеет определенную частоту свободных колебаний, зависящую от параметров этой системы.

Например, частота свободных колебаний пружинного маятника зависит от массы груза и жесткости пружины.

Эксперимент №3. Теперь рассмотрим колебания двух одинаковых маятников, движущихся следующим образом. В один и тот же момент времени левый маятник из крайнего левого положения начинает движение вправо, а правый маятник из крайнего правого положения движется влево. Оба маятника колеблются с одной и той же частотой (поскольку длины их нитей равны) и с одинаковыми амплитудами. Однако эти колебания отличаются друг от друга: в любой момент времени скорости маятников направлены, в противоположные стороны. В таком случае говорят, что колебания маятников происходят в противоположных фазах.

Если маятники колеблются с одинаковыми частотами, но скорости этих маятников в любой момент времени направлены одинаково, то говорят, что маятники колеблются в одинаковых фазах.

Рассмотрим еще один случай. Если один момент скорости обоих маятников направлены в одну сторону, но через некоторое время они будут направлены в разные стороны, то в таком случае говорят, что колебания происходят с определенной разностью фаз.

Физическая величина, называемая фазой, используется не только при сравнении колебаний двух или нескольких тел, но и для описания колебаний одного тела.

Таким образом, колебательное движение характеризуется амплитудой, частотой (или периодом) и фазой.

В природе и технике широко распространены колебания, называемые гармоническими. Слайд №5.

Периодические изменения во времени физической величины, происходящие по закону синуса или косинуса, называются гармоническими колебаниями.

Слайд №6. Рассмотрим график зависимости смещения от времени х(t), х – смещение, расстояние от положения устойчивого равновесия. Определим по графику амплитуду, период и частоту колебания.

А=1м, Т=20с, =1/20 Гц.

4. Закрепление темы. Решение задач.

Слайд №7. Сердце - это орган, имеющий массу 300 г. С 15 до 50 лет оно бьется со скоростью 70 раз в минуту. В период между 60 и 80 годами оно ускоряет свое движение, достигая примерно 79 ударов в минуту. В среднем это составляет 4,5 тысячи пульсаций в час и 108 тысяч в день. Сердце велосипедиста может быть вдвое больше, чем у человека, не занимающегося спортом, - 1250 кубических сантиметров вместо 750. В обычном режиме этот орган перекачивает 360 литров крови в час, а за всю жизнь - 224 миллиона литров. Столько же, сколько река Сена за 10 минут!

Чему равен период колебаний работы сердца? (0,86 с)

Слайд №8. Небольшие размеры колибри и их способность сохранять постоянную температуру тела требуют интенсивного обмена веществ. Ускоряются все важнейшие функции в организме, сердце делает до 1260 ударов в минуту, увеличивается ритм дыхания - до 600 дыхательных движений за одну минуту. Высокий уровень обмена веществ поддерживается интенсивным питанием - колибри почти непрерывно кормятся нектаром цветов.

Определите частоту колебаний сердца колибри. (21 Гц - частота сокращения сердца.)

5. Домашнее задание: §26-27, упр. 24(3,4,5), подгов. к лаб. раб. №3. Слайд №8.

6. Самостоятельная работа с самопроверкой. Слайды № 9-12.

1 вариант

2 вариант

1. Колебания – это движения тела…
  1. Из положения равновесия.
  2. По кривой траектории.
  3. В вертикальной плоскости.
  4. Обладающее той или иной степенью повторяемости во времени.
1. Интервал времени, за который совершается одно полное колебание, – это…
  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.

2. Число полных колебаний за 1 с определяет …

  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.
2. Наибольшее отклонение тела от положения равновесия – это…
  1. Смещение.
  2. Частота.
  3. Период.
  4. Амплитуда.
3. Частота свободных колебаний пружинного маятника равен 10 Гц. Чему равен период колебаний?
  1. 0,1 с.
  2. 10 с.
3. Период свободных колебаний нитяного маятника равен 5 с. Чему равна частота его колебаний?
  1. 0,2 Гц.
  2. 20 Гц
  3. 5 Гц.
  4. 10 Гц.
4. За 6 секунд маятник совершает 12 колебаний. Чему равна частота колебаний?
  1. 0,5 Гц
  2. 72 Гц
4. За 5 секунд маятник совершает 10 колебаний. Чему равен период колебаний?
  1. 0,5 с

Слайд №13. Вариант 1: D, B, C, B. Вариант 2: C, D, A, A.

7. Итоги урока. Оценки за урок.

Литература, используемая при подготовке к уроку:

  1. Физика. 9 кл.: учебник для общеобразоват. учреждений / А.В. Перышкин, У.М. Гутник. – М.: Дрофа, 2011.

37. Гармонические колебания. Амплитуда, период и частота колебаний.

Колебаниями называются процессы, характеризуемые определённой повторяемостью со временем. Процесс распространения колебаний в пространстве называют волной. Можно без преувеличения сказать, что мы живём в мире колебаний и волн. Действительно, живой организм существует благодаря периодическому биению сердца, наши лёгкие колеблются при дыхании. Человек слышит и разговаривает вследствие колебаний его барабанных перепонок и голосовых связок. Световые волны (колебания электрических и магнитных полей) позволяют нам видеть. Современная техника также чрезвычайно широко использует колебательные процессы. Достаточно сказать, что многие двигатели связаны с колебаниями: периодическое движение поршней в двигателях внутреннего сгорания, движение клапанов и т.д. Другими важными примерами являются переменный ток, электромагнитные колебания в колебательном контуре, радиоволны и т.д. Как видно из приведённых примеров, природа колебаний различна. Однако они сводятся к двум типам - механическим и электромагнитным колебаниям. Оказалось, что, несмотря на различие физической природы колебаний, они описываются одинаковыми математическими уравнениями. Это позволяет выделить в качестве одного из разделов физики учение о колебаниях и волнах, в котором осуществляется единый подход к изучению колебаний различной физической природы.

Любая система, способная колебаться или в которой могут происходить колебания, называется колебательной. Колебания, происходящие в колебательной системе, выведенной из состояния равновесия и представленной самой себе, называют свободными колебаниями. Свободные колебания являются затухающими, так как энергия, сообщенная колебательной системе, постоянно убывает.

Гармоническими называют колебания, при которых какая-либо физическая величина, описывающая процесс, изменяется со временем по закону косинуса или синуса:

Выясним физический смысл постоянных A, w, a, входящих в это уравнение.

Константа А называется амплитудой колебания. Амплитуда – это наибольшее значение, которое может принимать колеблющаяся величина. Согласно определению, она всегда положительна. Выражение wt+a, стоящее под знаком косинуса, называют фазой колебания. Она позволяет рассчитать значение колеблющейся величины в любой момент времени. Постоянная величина a представляет собой значение фазы в момент времени t =0 и поэтому называется начальной фазой колебания. Значение начальной фазы определяется выбором начала отсчёта времени. Величина w получила название циклической частоты, физический смысл которой связан с понятиями периода и частоты колебаний. Периодом незатухающих колебаний называется наименьший промежуток времени, по истечении которого колеблющаяся величина принимает прежнее значение, или коротко - время одного полного колебания. Число колебаний, совершаемых в единицу времени, называют частотой колебаний. Частота v связана с периодом Т колебаний соотношением v=1/T

Частота колебаний измеряется в герцах (Гц). 1 Гц частота периодического процесса, при котором за 1 с происходит одно колебание. Найдём связь между частотой и циклической частотой колебания. Используя формулу, находим значения колеблющейся величины в моменты времени t=t 1 и t=t 2 =t 1 +T, где Т - период колебания.

Согласно определению периода колебаний, Это возможно, если , поскольку косинус - периодическая функция с периодом 2p радиан. Отсюда . Получаем . Из этого соотношения следует физический смысл циклической частоты. Она показывает, сколько колебаний совершается за 2p секунд.

Свободные колебания колебательной системы являются затухающими. Однако на практике возникает потребность в создании незатухающих колебаний, когда потери энергии в колебательной системе компенсируются за счёт внешних источников энергии. В этом случае в такой системе возникают вынужденные колебания. Вынужденными называют колебания, происходящие под действием периодически изменяющегося воздействия, асами воздействия - вынуждающими. Вынужденные колебания происходят с частотой, равной частоте вынуждающих воздействий. Амплитуда вынужденных колебаний возрастает при приближении частоты вынуждающих воздействий к собственной частоте колебательной системы. Она достигает максимального значения при равенстве указанных частот. Явление резкого возрастания амплитуды вынужденных колебаний, когда частота вынуждающих воздействий равна собственной частоте колебательной системы, называется резонансом.

Явление резонанса широко используется в технике. Оно может быть как полезным, так и вредным. Так, например, явление электрического резонанса играет полезную роль при настройке радиоприемника на нужную радиостанцию изменяя величины индуктивности и ёмкости, можно добиться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией. В результате этого в контуре возникнут резонансные колебания данной частоты, амплитуды же колебаний, создаваемых другими станциями, будут малы. Это приводит к настройке радиоприёмника на нужную станцию.

38. Математический маятник. Период колебания математического маятника.


39. Колебание груза на пружине. Превращение энергии при колебаниях.


40. Волны. Поперечные и продольные волны. Скорость и длина волны.


41. Свободные электромагнитные колебания в контуре. Превращение энергии в колебательном контуре. Превращение энергии.

Периодические или почти периодические изменения заряда, силы тока и напряжёния называют электрическими колебаниями.

Получить электрические колебания почти столь же просто, как и заставить тело колебаться, подвесив его на пружине. Но наблюдать электрические колебания уже не так просто. Ведь мы непосредственно не видим ни перезарядки конденсатора, ни тока в катушке. К тому же колебания обычно происходят с очень большой частотой.

Наблюдают и исследуют электрические колебания с помощью электронного осциллографа. На горизонтально отклоняющие пластины электроннолучевой трубки осциллографа подается переменное напряжение развертки Up “пилообразной» формы. Сравнительно медленно напряжение нарастает, а потом очень резко уменьшается. Электрическое поле между пластинами заставляет электронный луч пробегать экран в горизонтальном направлении с постоянной скоростью и затем почти мгновенно возвращаться назад. После этого весь процесс повторяется. Если теперь присоединить вертикально отклоняющие пластины к конденсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране образуется временная «развертка» колебаний, вполне подобная той, которую вычерчивает маятник с песочницей на движущемся листе бумаги. Колебания затухают с течением времени

Эти колебания - свободные. Они возникают после того, как конденсатору сообщается заряд, выводящий систему из состояния равновесия. Зарядка конденсатора эквивалентна отклонению маятника от положения равновесия.

В электрической цепи можно также получить и вынужденные электрические колебания. Такие колебания появляются при наличии в цепи периодической электродвижущей силы. Переменная ЭДС индукции возникает в проволочной рамке из нескольких витков при вращении ее в магнитном поле (рис. 19). При этом магнитный поток, пронизывающий рамку, периодически изменяется, В соответствии с законом электромагнитной индукции периодически меняется и возникающая ЭДС индукции. При замыкании цепи через гальванометр пойдет переменный ток и стрелка начнет колебаться около положения равновесия.

2.Колебательный контур. Простейшая система, в которой могут происходить свободные электрические колебания, состоит из конденсатора и катушки, присоединенной к обкладкам конденсатора (рис. 20). Такая система называется колебательным контуром.

Рассмотрим, почему в контуре возникают колебания. Зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя. При этом конденсатор получит энергию:

где qm - заряд конденсатора, а С - его электроемкость. Между обкладками конденсатора возникнет разность потенциалов Um.

Переведем переключатель в положение 2. Конденсатор начнет разряжаться, и в цепи появится электрический ток. Сила тока не сразу достигает максимального значения, а увеличивается постепенно. Это обусловлено явлением самоиндукции. При появлении тока возникает переменное магнитное поле. Это переменное магнитное поле порождает вихревое электрическое поле в проводнике. Вихревое электрическое поле при нарастании магнитного поля направлено против тока и препятствует его мгновенному увеличению.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой: рис.

где i сила тока,. L - индуктивность катушки. В момент, когда конденсатор полностью разрядится (q=0), энергия электрического поля станет равной нулю. Энергия же тока (энергия магнитного поля) согласно закону сохранения энергии будет максимальной. Следовательно, в этот момент сила тока также достигнет максимального значения

Несмотря на то что к этому моменту разность потенциалов на концах катушки становится равной нулю, электрический ток не может прекратиться сразу. Этому препятствует явление самоиндукции. Как только сила тока и созданное им магнитное поле начнут уменьшаться, возникает вихревое электрическое поле, которое направлено по току и поддерживает его.

В результате конденсатор перезаряжается до тех пор, пока ток, постепенно уменьшаясь, не станет равным нулю. Энергия магнитного поля в этот момент также будет равна нулю, а энергия электрического поля конденсатора опять станет максимальной.

После этого конденсатор вновь будет перезаряжаться и система возвратится в исходное состояние. Если бы не было потерь энергии, то этот процесс продолжался бы сколь угодно долго. Колебания были бы незатухающими. Через промежутки времени, равные периоду колебаний, состояние системы повторялось бы.

Но в действительности потери энергии неизбежны. Так, в частности, катушка и соединительные провода обладают сопротивлением R, и это ведет к постепенному превращению энергии электромагнитного поля во внутреннюю энергию проводника.

При колебаниях, происходящих в контуре, наблюдается превращение энергии магнитного поля в энергию электрического поля и наоборот. Поэтому эти колебания называют электромагнитными. Период колебательного контура находится по формуле.

Выбор редакции
Шаг 1: Подготовим говядину и начиним ее чесноком. Вырезку говядины для начала необходимо хорошо промыть под холодной проточной водой,...

Доброе время суток всем любителям кулинарии! Как раз в каталоге рецептов все опытные и не очень кулинары смогут найти полным-полно...

Статья предлагает вам рецепты блюд и меню да ребенка 2-х лет, а так же рекомендации по его питанию. Со 100% уверенностью можно сказать,...

Кулинарное сообщество Li.Ru - Рецепты для детей на завтрак Практически идеальный завтрак - яичница-болтунья, рецепт которой...
Корица – пряность, которую довольно часто используют для приготовления различных десертов и напитков. Ее сжиросжигающие свойства...
Уровень экономической ситуации в стране определяется многими показателями. От экономики страны полностью зависит уровень жизни каждого из...
Должностные обязанности повара зависят от величины и профиля компании: одно дело разогревать сосиски в тесте и самому их продавать, и...
С момента трудоустройства и до дня увольнения трудовая книжка хранится в отделе кадров или в бухгалтерии предприятия. Ответственность за...
Должностная инструкция электромонтера по ремонту электрооборудования [наименование организации, предприятия и т. п.]Настоящая...