Доклад: Реактивное движение в природе и технике. Реактивное движение в природе и технике


В небо взмывают многотонные космические корабли, а в морских водах ловко лавируют прозрачные, студенистые медузы, каракатицы и осьминоги - что между ними общего? Оказывается, в обоих случаях для перемещения используется принцип реактивного движения. Именно этой теме и посвящена наша сегодняшняя статья.

Заглянем в историю

Самые первые достоверные сведения о ракетах относятся к XIII веку. Они применялись индусами, китайцами, арабами и европейцами в боевых действиях как боевое и сигнальное оружие. Затем последовали целые столетия почти полного забвения этих устройств.

В России идея использования реактивного двигателя возродилась благодаря работам революционера-народовольца Николая Кибальчича. Сидя в царских застенках, он разработал российский проект реактивного двигателя и летательный аппарат для людей. Кибальчич был казнен, а его проект долгие годы пылился в архивах царской охранки.

Основные идеи, чертежи и расчеты этого талантливого и мужественного человека получили дальнейшее развитие в трудах К. Э. Циолковского, который предложил использовать их для межпланетных сообщений. С 1903 по1914 год он публикует ряд работ, где убедительно доказывает возможность использования реактивного движения для исследования космического пространства и обосновывает целесообразность использования многоступенчатых ракет.

Многие научные разработки Циолковского и по сей день применяются в ракетостроении.

Биологические ракеты

Как, вообще возникла идея перемещаться, отталкиваясь от собственной реактивной струи? Возможно, пристально наблюдая за морскими обитателями, жители прибрежных зон заметили, как это происходит в животном мире.

Например, морской гребешок перемещается за счет реактивной силы водной струи, выбрасываемой из раковины при быстром сжатии её створок. Но ему никогда не угнаться за самыми быстрыми пловцами - кальмарами.

Их ракетообразные тела мчатся хвостом вперед, выбрасывая из специальной воронки, запасенную воду. перемещаются по тому же принципу, выдавливая воду сокращением своего прозрачного купола.

Природа одарила «реактивным двигателем» и растение под названием «бешеный огурец». Когда его плоды полностью созревают, в ответ на самое слабое прикосновение, он выстреливает клейковину с семенами. Сам плод при этом отбрасывается в противоположную сторону на расстояние до 12 м!

Ни морским обитателям, ни растениям неведомы физические законы, лежащие в основе этого способа передвижения. Мы же попробуем в этом разобраться.

Физические основы принципа реактивного движения

Вначале обратимся к простейшему опыту. Надуем резиновый шарик и, не завязывая, отпустим в свободный полёт. Стремительное движение шарика будет продолжаться до тех пор, пока истекающая из него струя воздуха будет достаточно сильной.

Для объяснения результатов этого опыта нам следует обратиться к III закону , который утверждает, что два тела взаимодействуют с силами равными по величине и противоположными по направлению. Следовательно, сила, с которой шарик воздействует на вырывающиеся из него струи воздуха, равна силе, с которой воздух отталкивает от себя шарик.

Перенесем эти рассуждения на ракету. Эти устройства на огромной скорости выбрасывают некоторую часть своей массы, вследствие чего сами получают ускорение в противоположном направлении.

С точки зрения физики этот процесс чётко объясняется законом сохранения импульса. Импульс - это произведение массы тела на его скорость (mv) Пока ракета в покое, её скорость и импульс равны нулю. Если из неё выбрасывается реактивная струя, то оставшаяся часть по закону сохранения импульса должна приобрести такую скорость, чтобы суммарный импульс по-прежнему был равным нулю.

Обратимся к формулам:

m г v г + m р v р =0;

m г v г =- m р v р,

где m г v г импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и реактивной струи противоположны.

Устройство и принцип работы реактивного двигателя

В технике реактивные двигатели приводят в движение самолёты, ракеты, выводят на орбиты космические аппараты. В зависимости от назначения они имеют разное устройство. Но каждый из них имеет запас топлива, камеру для его сгорания и сопло, ускоряющее реактивную струю.

На межпланетных автоматических станциях оборудован также приборный отсек и кабины с системой жизнеобеспечения для космонавтов.

Современные космические ракеты это сложные, многоступенчатые летательные аппараты, использующие новейшие достижения инженерной мысли. После старта вначале сгорает топливо в нижней ступени, после чего она отделяется от ракеты, уменьшая её общую массу и увеличивая скорость.

Затем расходуется топливо во второй ступени и т. д. Наконец, летательный аппарат выводится на заданную траекторию и начинает свой самостоятельный полёт.

Немного помечтаем

Великий мечтатель и учёный К. Э. Циолковский подарил будущим поколениям уверенность в том, что реактивные двигатели позволят человечеству вырваться за пределы земной атмосферы и устремиться в космос. Его предвидение сбылось. Луна, и даже далёкие кометы успешно исследуются космическими аппаратами.

В космонавтике используют жидкостные реактивные двигатели. Используя в качестве топлива нефтепродукты, но скорости, которые удается получить с их помощью, недостаточны для очень дальних перелётов.

Возможно, вы, наши дорогие читатели, станете свидетелями полётов землян в другие галактики на аппаратах с ядерными, термоядерными или ионными реактивными двигателями.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Реактивное движение в природе и в технике - весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: "Реактивное движение в быту, природе и технике".

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары - "живые торпеды"

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия - мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется "живой торпедой". Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников - макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них - отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

"Бешеный огурец"

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных - созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание закона сохранения импульса позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как "формула Циолковского". Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, - это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике "Восток" облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг - первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году "Вега-1" и "Вега-2" (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике - это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные октрытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Среди великих технических и научных достижений XX столетия одно из первых мест, несомненно, принадлежит ракетам и теории реактивного движения . Годы второй мировой войны (1941-1945) привели к необычайно быстрому совершенствованию конструкций реактивных аппаратов. На полях сражений вновь появились пороховые ракеты, но уже на более калорийном бездымном тротилпироксилиновом порохе («катюши»). Были созданы самолеты с воздушно-реактивными двигателями, беспилотные самолеты с пульсирующими воздушно-реактивными двигателями («ФАУ-1») и баллистические ракеты с дальностью полета до 300 км («ФАУ-2»).

Ракетная-техника становится сейчас очень важной и быстрорастущей отраслью промышленности. Развитие теории полета реактивных аппаратов - одна из насущных проблем современного научно-технического развития.

К. Э. Циолковский много сделал для познания основ теории движения ракет . Он был первым в истории науки, кто формулировал и исследовал проблему изучения прямолинейных движений ракет, исходя из законов теоретической механики. Как мы указывали, принцип сообщения движения, при помощи сил реакции отбрасываемых частиц был осознан Циолковским еще в 1883 году, однако создание им математически строгой теории реактивного движения относится к концу XIX столетия.

В одной из своих работ Циолковский писал: «Долго на ракету я смотрел, как и все: с точки зрения увеселений и маленьких применений. Не помню хорошо, как мне пришло в голову сделать вычисления, относящиеся к ракете. Мне кажется, первые семена мысли были заронены известным фантазером Жюлем Верном; он пробудил работу моего мозга в известном направлении. Явились желания, за желаниями возникла деятельность ума. ...Старый листок с окончательными формулами, относящимися к реактивному прибору, помечен датою 25 августа 1898 года».

«...Никогда я не претендовал на полное решение вопроса. Сначала неизбежно идут: мысль, фантазия, сказка. За ними шествует научный расчет. И уже в конце концов исполнение венчает мысль. Мои работы о космических путешествиях относятся к средней фазе творчества. Более, чем кто-нибудь, я понимаю бездну, разделяющую идею от ее осуществления, так как в течение моей жизни я не только мыслил и вычислял, но и исполнял, работая также руками. Однако нельзя не быть идее: исполнению предшествует мысль, точному расчету - фантазия».

В 1903 году в журнале «Научное обозрение» появилась первая статья Константина Эдуардовича по ракетной технике, которая называлась «Исследование мировых пространств реактивными приборами». В этом труде на основании простейших законов теоретической механики (закона сохранения количества движения и закона независимого действия сил) была дана теория полета ракеты и обоснована возможность применения реактивных аппаратов для межпланетных сообщений (Создание общей теории движения тел, масса которых изменяется в процессе движения, принадлежит профессору И. В. Мещерскому (1859-1935)).

Идея применения ракеты для решения научных проблем, использование реактивных двигателей для создания движения грандиозных межпланетных кораблей целиком принадлежат Циолковскому. Он родоначальник современных жидкостных ракет дальнего действия, один из создателей новой главы теоретической механики.

Классическая механика, изучающая законы движения и равновесия материальных тел, базируется на трех законах движения , отчетливо и строго сформулированных английским ученым еще в 1687 году. Эти законы применялись многими исследователями для изучения движения тел, масса которых не изменялась во время движения. Были рассмотрены очень важные случаи движения и создалась большая наука - механика тел постоянной массы. Аксиомы механики тел постоянной массы, или законы движения Ньютона, явились обобщением всего предыдущего развития механики. В настоящее время основные законы механического движения излагаются во всех учебниках физики для средней школы. Мы дадим здесь краткое изложение законов движения Ньютона, так как последующий шаг в науке, позволивший изучать движение ракет, был дальнейшим развитием методов классической механики.

Большое значение закон сохранения импульса имеет при рассмотрении реактивного движения.
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила , толкающая тело.
Особенность реактивной силы заключается в том, что она возникает в результате взаимодействия между собой частей самой системы без какого-либо взаимодействия с внешними телами.
В то время, как сила, сообщающая ускорение, например, пешеходу, кораблю или самолету, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

Так движение тела можно получить в результате вытекания струи жидкости или газа.

В природе реактивное движение присуще в основном живым организмам, обитающим в водной среде.



В технике реактивное движение используется на речном транспорте (водометные двигатели), в автомобилестроении (гоночные автомобили), в военном деле, в авиации и космонавтике.
Все современные скоростные самолеты оснащены реактивными двигателями, т.к. они способны обеспечить необходимую скорость полета.
В космическом пространстве использовать другие двигатели, кроме реактивных, невозможно, так как там нет опоры, отталкиваясь от которой можно было бы бы получать ускорение.

История развития реактивной техники

Создателем русской боевой ракеты был ученый-артиллерист К.И. Константинов. При весе в 80 кг далььность полета ракеты Константинова достигала 4 км.




Идея применения реактивного движения в летательном аппарате, проект реактивного воздухоплавательного прибора, в 1881 году была выдвинута Н.И. Кибальчичем.




В 1903 году знаменитый ученый-физик К.Э. Циолковский доказал возможность полета в межпланетном пространстве и разработал проект первого ракетоплана с жидкостно-реактивным двигателем.




К.Э. Циолковский спроектировал космический ракетный поезд, составленный из ряда ракет, работающих поочередно и отпадающих по мере израсходования горючего.


Принципы применения реактивных двигателей

Основой любого реактивного двигателя является камера сгорания, в которой при сгорании топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Газы вырываются из узкого сопла ракеты с большой скоростью и создают реактивную тягу. В соответствии с законом сохранения импульса, ракета приобретает скорость в противоположном направлении.

Импульс системы (ракета-продукты сгорания) остается равным нулю. Так как масса ракеты уменьшается, то даже при постоянной скорости истечения газов ее скорость будет увеличиваться, постепенно достигая максимального значения.
Движение ракеты - это пример движения тела с переменной массой. Для расчета ее скорости используют закон сохранения импульса.



Реактивные двигатели делятся на ракетные двигатели и воздушно-реактивные двигатели.

Ракетные двигатели бывают на твердом или на жидком топливе.
В ракетных двигателях на твердом топливе топливо, содержащее и горючее, и окислитель, помешают внутрь камеры сгорания двигателя.
В жидкостно-реактивных двигателях , предназначенных для запуска космических кораблей, горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания. В качестве горючего в них можно использовать керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя, необходимого для горения, - жидкий кислород, азотную кислоту, и др.




Современные трехступенчатые космические ракеты запускаются вертикально, а после прохода плотных слоев атмосферы переводятся на полет в заданном направлении. Каждая ступень ракеты имеет свой бак с горючим и бак с окислителем, а также свой реактивный двигатель. По мере сгорания топлива отработанные ступени ракеты отбрасываются.




Воздушно-реактивные двигатели в настоящее время применяют главным образом в самолетах. Основное их отличие от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.
К воздушно-реактивным двигателям относятся турбокомпрессорные двигатели как с осевым, так и с центробежным компрессором.
Воздух в таких двигателях всасывается и сжимается компрессором, приводимым в движение газовой турбиной. Газы, выходящие из камеры сгорания, создают реактивную силу тяги и вращают ротор турбины.




При очень болььших скоростях полета сжатие газов в камере сгорания можно осуществить за счет встречного набегающего воздушного потока. Необходимость в компрессоре отпадает.

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ


Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог


Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Выбор редакции
Характеристика углеводов. Кроме неорганических веществ в состав клетки входят и органические вещества: белки, углеводы, липиды,...

План: Введение1 Сущность явления 2 Открытие броуновского движения 2.1 Наблюдение 3 Теория броуновского движения 3.1 Построение...

На всех этапах существования языка он неразрывно связан с обществом. Эта связь имеет двусторонний характер: язык не существует вне...

Технологии Новые идеи появляются каждый день. Одни из них остаются на бумаге, другие же получают зеленый свет - их тестируют и при...
Пояснительная записка Данное занятие было составлено и проведено к 69-летию победы, т. е., относится к лексической теме «День Победы»....
К сожалению, в школе нас не всегда этому учат. А ведь очень многих интересуют правила поведения в кругу друзей и в обществе малознакомых...
Одной из самых актуальных проблем для простых интернет-пользователей и владельцев сайтов / форумов является массовая рассылка . Со спамом...
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....
б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...