Непрерывность функций – теоремы и свойства. Непрерывность функции в точке и на промежутке. С примерами


Определение непрерывности функции в точке
Функция f(x) называется непрерывной в точке x 0 окрестности U(x 0) этой точки, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.

Здесь подразумевается, что x 0 - это конечная точка. Значение функции в ней может быть только конечным числом.

Определение непрерывности справа (слева)
Функция f(x) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Примеры

Пример 1

Используя определения по Гейне и Коши доказать, что функция непрерывна для всех x .

Пусть есть произвольное число. Докажем, что заданная функция непрерывна в точке . Функция определена для всех x . Поэтому она определена в точке и в любой ее окрестности.

Используем определение по Гейне

Используем . Пусть есть произвольная последовательность, сходящаяся к : . Применяя свойство предела произведения последовательностей имеем:
.
Поскольку есть произвольная последовательность, сходящаяся к , то
.
Непрерывность доказана.

Используем определение по Коши

Используем .
Рассмотрим случай . Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П1.1) .

Применим формулу:
.
Учитывая (П1.1), сделаем оценку:

;
(П1.2) .

Применяя (П1.2), оценим абсолютную величину разности:
;
(П1.3) .
.
Согласно свойствам неравенств, если выполняется (П1.3), если и если , то .


.

Теперь рассмотрим точку . В этом случае
.
.


.
Это означает, что функция непрерывна в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна на всей действительной оси.

Пример 2

Используя доказать, что функция непрерывна для всех .

Заданная функция определена при . Докажем, что она непрерывна в точке .

Рассмотрим случай .
Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П2.1) .

Применим формулу:
(П2.2) .
Положим . Тогда
.

Учитывая (П2.1), сделаем оценку:


.
Итак,
.

Применяя это неравенство, и используя (П2.2), оценим разность:

.
Итак,
(П2.3) .

Вводим положительные числа и , связав их соотношениями:
.
Согласно свойствам неравенств, если выполняется (П2.3), если и если , то .

Это означает, что для любого положительного всегда найдется . Тогда для всех x , удовлетворяющих неравенству , автоматически выполняется неравенство:
.
Это означает, что функция непрерывна в точке .

Теперь рассмотрим точку . Нам нужно показать, что заданная функция непрерывна в этой точке справа. В этом случае
.
Вводим положительные числа и :
.

Отсюда видно, что для любого положительного всегда найдется . Тогда для всех x , таких что , выполняется неравенство:
.
Это означает, что . То есть функция непрерывна справа в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Определение. Пусть функция у = f(x) определена в точке x0 и некоторой её окрестности. Функция у = f(x) называется непрерывной в точке x0 , если:

1. существует
2. этот предел равен значению функции в точке x0:

При определении предела подчёркивалось, что f(x) может быть не определена в точке x0, а если она определена в этой точке, то значение f(x0) никак не участвует в определении предела. При определении непрерывности принципиально, что f(x0) существует, и это значение должно быть равно lim f(x).

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(x) называется непрерывной в точке x0, если для всех ε>0 существует положительное число δ, такое что для всех x из δ-окрестности точки x0 (т.е. |х-x0|
Здесь учитывается, что значение предела должно быть равно f(x0), поэтому, по сравнению с определением предела, снято условие проколотости δ-окрестности 0
Дадим ещё одно (равносильное предыдущим) определение в терминах приращений. Обозначим Δх = x - x0, эту величину будем называть приращением аргумента. Так как х->x0, то Δх->0, т е. Δх - б.м. (бесконечно малая) величина. Обозначим Δу = f(х)-f(x0), эту величину будем называть приращением функции, так как |Δу| должно быть (при достаточно малых |Δх|) меньше произвольного числа ε>0, то Δу- тоже б.м. величина, поэтому

Определение. Пусть функция у = f(х) определена в точке x0 и некоторой её окрестности. Функция f(х) называется непрерывной в точке x0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Определение. Функция f(х), не являющаяся непрерывной в точке x0, называется разрывной в этой точке.

Определение. Функция f(х) называется непрерывной на множестве X, если она непрерывна в каждой точке этого множества.

Теорема о непрерывности суммы, произведения, частного

Теорема о переходе к пределу под знаком непрерывной функции

Теорема о непрерывности суперпозиции непрерывных функций

Пусть функция f(x) определена на отрезке и монотонна на этом отрезке. Тогда f(x) может иметь на этом отрезке только точки разрыва первого рода.

Теорема о промежуточном значении. Если функция f(x) непрерывна на отрезке и в двух точках а и b (a меньше b) принимает неравные значения A = f(a) ≠ В = f(b), то для любого числа С, лежащего между А и В, найдётся точка c ∈ , в которой значение функции равно С: f(c) = C.

Теорема об ограниченности непрерывной функции на отрезке. Если функция f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема о достижении минимального и максимального значений. Если функция f(x) непрерывна на отрезке, то она достигает на этом отрезке свои нижнюю и верхнюю грани.

Теорема о непрерывности обратной функции. Пусть функция y=f(x) непрерывна и строго возрастает (убывает) на отрезке [а,b]. Тогда на отрезке существует обратная функция х = g(y), также монотонно возрастающая (убывающая) на и непрерывная.

Непрерывные функции образуют основной класс функций, с которыми оперирует математический анализ. Представление о непрерывной функции можно получить, если сказать, что график ее непрерывен, т.е. его можно начертить, не отрывая карандаша от бумаги.

Непрерывная функция математически выражает одно свойство, с которым нам приходится часто встречаться на практике, заключающееся в том, что малому приращению независимой переменной соответствует малое же приращение зависимой от нее переменной (функции). Прекрасными примерами непрерывной функции могут служить различные законы движения тел \(s=f(t)\) , выражающие зависимости пути \(s\) , пройденного телом, от времени \(t\) . Время и пространство непрерывны, при этом тот или иной закон движения тела \(s=f(t)\) устанавливает между ними определенную непрерывную связь, характеризующуюся тем, что малому приращению времени соответствует малое же приращение пути.

К абстракции непрерывности человек пришел, наблюдая окружающие его, так называемые сплошные среды - твердые, жидкие или газообразные, например металлы, воду, воздух. На самом деле, как теперь хорошо известно, всякая физическая среда представляет собой скопление большого числа отделенных друг от друга движущихся частиц. Однако эти частицы и расстояния между ними настолько малы по сравнению с объемами сред, с которыми приходится иметь дело в макроскопических физических явлениях, что многие такие явления можно достаточно хорошо изучать, если считать приближенно массу изучаемой среды без всяких просветов, непрерывно распределенной в занятом ею пространстве. На таком допущении базируются многие физические дисциплины, например гидродинамика, аэродинамика, теория упругости. Математическое понятие непрерывности играет, естественно, в этих дисциплинах, как и во многих других, большую роль.

Рассмотрим какую-либо функцию \(y=f(x)\) и вполне определенное значение независимой переменной \(x_0\) . Если наша функция отражает некоторый непрерывный процесс, то значениям \(x\) , мало отличающимся от \(x_0\) должны соответствовать значения функции \(f(x)\) мало отличающиеся от значения \(f(x_0)\) в точке \(x_0\) . Таким образом, если приращение \(x-x_0\) независимой переменной мало, то должно быть малым также и соответствующее приращение \(f(x)-f(x_0)\) функции. Иными словами, если приращение независимой переменной \(x-x_0\) стремится к нулю, то приращение \(f(x)-f(x_0)\) функции должно, в свою очередь, стремиться к нулю, что может быть записано следующим образом:

\(\lim_{x-x_0\to0}\Bigl=0.\)

Это соотношение и является математическим определением непрерывности функции в точке \(x_0\) .

Функция \(f(x)\) называется непрерывной в точке \(x_0\) , если выполняется равенство (1).

Дадим еще такое определение:

Функция называется непрерывной для всех значений, принадлежащих к данному отрезку, если она непрерывна в каждой точке \(x_0\) этого отрезка, т.е. в каждой такой точке выполняется равенство (1).

Таким образом, для того чтобы ввести математическое определение свойства функции, заключающегося в том, что график ее есть непрерывная (в обычном понимании этого термина) кривая, появилась необходимость определить сначала локальное, местное свойство непрерывности (непрерывность в точке \(x_0\) ), а затем на этой основе определить непрерывность функции на целом отрезке.

Приведенное определение, впервые указанное в начале прошлого столетия Коши, является общепринятым в современном математическом анализе. Проверка на многочисленных конкретных примерах показала, что это определение хорошо соответствует сложившемуся у нас практическому представлению о непрерывной функции, например представлению о непрерывном графике.

В качестве примеров непрерывных функций могут служить известные из школьной математики элементарные функции \(x^n,\) \(\sin{x},\) \(\cos{x},\) \(a^x,\) \(\lg{x},\) \(\arcsin{x},\) \(\arccos{x}\) . Все перечисленные функции непрерывны на отрезках изменения \(x\) , где они определены.

Если непрерывные функции складывать, вычитать, умножать и делить (при знаменателе, не равном нулю), то в результате мы снова придем к непрерывной функции. Однако при делении непрерывность, как правило, нарушается для тех значений \(x_0\) , при которых функция, стоящая в знаменателе, обращается в нуль. Результат деления представляет собой тогда разрывную в точке \(x_0\) функцию.

Функция \(y=\frac{1}{x}\) может служить примером разрывной в точке \(y=0\) функции. Ряд других примеров разрывных функций дают графики, изображенные на рис. 1.

Рекомендуем внимательно рассмотреть эти графики. Отметим, что разрывы функций бывают разные: иногда с приближением \(x\) к точке \(x_0\) , где функция претерпевает разрыв, предел \(f(x)\) существует, но отличен от \(f(x_0)\) , а иногда, как на рис. 1в, этого предела просто не существует. Бывает и так, что с приближением \(x\) к \(x_0\) с одной стороны \(f(x)-f(x_0)\to0\) , а если \(x\to x_0\) , приближаясь с другой стороны, то \(f(x)-f(x_0)\) уже не стремится к нулю. В этом случае, конечно, мы имеем разрыв функции, хотя про нее можно сказать, что она в этой точке «непрерывна с одной стороны». Все эти случаи можно проследить на приведенных графиках.

Определение непрерывности функции

1. Функция \(y=f(x)\) непрерывна в точке \(x=a\) , если пределы слева и справа равны и равны значению функции в этой точке, т. е.

\(\lim_{x\to a-0}f(x)=\lim_{x\to a+0}f(x)=f(a).\)

2. Функция \(y=f(x)\) непрерывна в точке \(x=a\) , если она определена в этой точке и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т. е. \(\lim_{\Delta x\to 0}\Delta y=0\) вблизи точки \(a\) .

Сумма, разность и произведение конечного числа непрерывных функций есть функция непрерывная.

Непрерывная на отрезке \(\) функция принимает любое промежуточное значение между ее наименьшим \(m\) и наибольшим \(M\) значением, то есть \(m\leqslant f(x)\leqslant M\) для всех \(x\in\) . Отсюда следует, что если в граничных точках отрезка \(\) функция имеет разные знаки, то внутри отрезка есть по крайней мере одно такое значение \(x=c\) , при котором функция обращается в ноль. Это свойство непрерывности функций позволяет находить приближенно корни многочленов.

Точки разрыва функции

Значения аргумента, которые не удовлетворяют условиям непрерывности, называются точками разрыва функции . При этом различают два рода точек разрыва функции.

Если при \(x\to a\) слева функция имеет конечный предел \(k_1\) , а при \(x\to a\) справа функция имеет конечный предел \(k_2\) и \(k_1\ne k_2\) , то говорят, что функция при \(x=a\) имеет разрыв первого рода . Разность \(|k_1-k_2|\) определяет скачок функции в точке \(x=a\) . Значение функции при \(x=a\) при этом может быть равно какому угодно числу \(k_3\) .

Если значение функции при \(x=a\) равно \(k_1\) , то говорят, что функция непрерывна слева; если же \(k_2\) , то говорят, что функция непрерывна справа.

Если \(k_1=k_2\ne k_3\) говорят, что функция имеет в точке \(a\) устранимый разрыв .

Если при \(x\to a\) справа или слева, предел функции не существует или равен бесконечности, то есть \(\lim_{x\to a}f(x)=\infty\) , то говорят, что при \(x=a\) функция имеет разрыв второго рода .

Пример 1. Найти множество значений \(x\) , при которых функция \(y=x^3-2x\) непрерывна.

Решение. Найдем приращение функции

\(\Delta y=(x+\Delta x)^3-2(x+\Delta x)-(x^3-2x)=\Delta x\,(\Delta x^2+3x\Delta x+3x^2-2).\)

При любых значениях переменной \(x\) приращение \(\Delta y\to0\) , если только \(\Delta x\to0\) поэтому функция непрерывна при всех действительных значениях переменной \(x\) .

Пример 2. Доказать непрерывность функции \(y=\frac{1}{x-1}\) в точке \(x=3\) .

Решение. Для доказательства найдем приращение функции \(y\) при переходе значения аргумента от \(x=3\) к \(x=3+\Delta x\)

\(\Delta y=\frac{1}{3+\Delta x-1}-\frac{1}{3-1}=\frac{1}{2+\Delta x}-\frac{1}{2}=\frac{2-2-\Delta x}{2(2+\Delta x)}=\frac{-\Delta x}{2(2+\Delta x)}.\)

Найдем предел приращения функции при \(\Delta x\to0\)

\(\lim_{\Delta x\to0}\Delta y=-\lim_{\Delta x\to0}\frac{\Delta x}{2(2+\Delta x)}=-\frac{0}{2(2+0)}=0.\)

Так как предел приращения функции при \(\Delta x\to0\) равен нулю, то функция при \(x\to3\) непрерывна.

Пример 3. Определить характер разрыва функций и построить графики:

\(\mathrm{a)}~y=\frac{1}{x-1}~\text{if}~x=1;\qquad\mathrm{b)}~y=\frac{x}{|x|}~\text{if}~x=0;\qquad\mathrm{c)}~y=\begin{cases}2x,&\text{if}~x\ne2,\\1,&\text{if}~x=2;\end{cases}\qquad\mathrm{d)}~y=a^{1/x}~(a>1);\qquad\mathrm{e)}~y=\operatorname{arctg}\frac{1}{x}.\)

Решение.

a) При \(x=1\) функция не определена, найдём односторонние пределы в этой точки:

\(\lim_{x\to1-0}\frac{1}{x-1}=-\infty;\quad\lim_{x\to1+0}\frac{1}{x-1}=+\infty.\)

Следовательно, в точке \(x=1\) функция имеет разрыв второго рода.

b) При \(x<0\) предел функции равен \(\lim_{0-0}\frac{x}{|x|}=-1=k_1\) . При \(x>0\) предел равен \(\lim_{0+0}\frac{x}{|x|}=1=k_2\) . Следовательно, в точке \(x=1\) функция \(y\) имеет разрыв первого рода и скачок функции равен \(|k_1-k_2|=|-1-1|=2\) .

c) Функция определена на всей числовой оси, неэлементарная, так как в точке \(x=2\) аналитическое выражение функции меняется. Исследуем непрерывность функции в точке \(x=2\) :

\(\lim_{x\to2-0}=4,\quad\lim_{x\to2+0}2x=4,\quad y(2)=1,\quad k_1=k_2\ne k_3.\)

Очевидно, что в точке \(x=2\) функция имеет устранимый разрыв.

d) Найдём левый и правый пределы функции в точке \(x=0\) :

\(y(+0)=\lim_{x\to+0}a^{1/x}=+\infty,\quad y(-0)=\lim_{x\to-0}a^{1/x}=0.\)

Итак, в точке \(x=0\) справа функция имеет разрыв второго рода, а слева – непрерывность.

e) Найдём односторонние пределы функции в точке \(x=0\) :

\(y(+0)=\lim_{x\to+0}\operatorname{arctg}\frac{1}{x}=\frac{\pi}{2},\quad y(-0)=\lim_{x\to-0}\operatorname{arctg}\frac{1}{x}=-\frac{\pi}{2}.\)

Итак, в точке \(x=0\) с обеих сторон у функции \(y=\operatorname{arctg}\frac{1}{x}\) скачки.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

1. Введение.

2. Определение непрерывности функции.

3. Классификация точек разрыва

4. Свойства непрерывных функций.

5. Экономический смысл непрерывности.

6. Заключение.

10.1. Введение

Всякий раз, оценивая неизбежные с течением времени изменения в окружающем нас мире, мы пытаемся проанализировать происходящие процессы, чтобы выделить их наиболее существенные черты. Один из первых на этом пути встает вопрос: как происходят характерные для этого явления изменения – непрерывно или дискретно , т.е. скачкообразно. Равномерно ли понижается курс валюты или обваливается, происходит постепенная эволюция или революционный скачок? Чтобы унифицировать качественные и количественные оценки происходящего, следует абстрагироваться от конкретного содержания и изучить проблему в терминах функциональной зависимости. Это позволяет сделать теория пределов, которую мы рассматривали на прошлой лекции.

10.2. Определение непрерывности функции

Непрерывность функции интуитивно связано с тем, что ее графиком является сплошная, нигде не прерывающаяся кривая. Мы вычерчиваем график такой функции, не отрывая ручки от бумаги. Если функция задана таблично, то о ее непрерывности, строго говоря, судить нельзя, потому что при заданном шаге таблицы поведение функции в промежутках не определено.

В реальности при непрерывности имеет место следующее обстоятельство: если параметры, характеризующие ситуацию, немного изменить, то не много изменится и ситуация. Здесь важно не то, что ситуация изменится, а то, что она изменится «немного».

Сформулируем понятие непрерывности на языке приращений. Пусть некоторое явление описывается функцией и точка a принадлежит области определения функции. Разность называется приращением аргумента в точке a , разность – приращением функции в точке a .

Определение 10.1. Функция непрерывна в точке a, если она определена в этой точке и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции :

Пример 10.1. Исследовать на непрерывность функцию в точке .

Решение. Построим график функции и отметим на нем приращения Dx и Dy (рис. 10.1).

Из графика видно, что чем меньше приращение Dx , тем меньше Dy . покажем это аналитически. Приращение аргумента равно , тогда приращение функции в этой точке будет равно

Отсюда видно, что если , то и :

.

Дадим еще одно определение непрерывности функции.

Определение 10.2. Функция называется непрерывной в точке а, если:

1) она определена в точке а, и некоторой ее окрестности;

2) односторонние пределы существуют и равны между собой:

;

3) предел функции при х ®а равен значению функции в этой точке:

.

Если хотя бы одно из этих условий нарушается, то говорят, что функция претерпевает разрыв .

Это определение является рабочим для установления непрерывности в точке. Следуя его алгоритму и отмечая совпадения и несовпадения требований определения и конкретного примера, можно сделать вывод о непрерывности функции в точке.

В определении 2 четко проступает идея близости, когда мы вводили понятие предела. При неограниченном приближении аргумента x к предельному значению a , непрерывная в точке a функция f (x ) сколь угодно близко приближается к предельному значению f (a ).

10.3. Классификация точек разрыва

Точки, в которых нарушаются условия непрерывности функции, называются точками разрыва этой функции. Если x 0 – точка разрыва функции , в ней не выполняется, по крайней мере, одно из условий непрерывности функции. Рассмотрим следующий пример.

1. Функция определена в некоторой окрестности точки a , но не определена в самой точке a . Например, функция не определена в точке a =2, поэтому претерпевает разрыв (см. рис. 10.2).

Рис. 10.2 Рис. 10.3

2. Функция определена в точке a и в некоторой ее окрестности, ее односторонние пределы существуют, но не равны другу:, то функция претерпевает разрыв. Например, функция

определена в точке , однако при функция испытывает разрыв (см. рис. 10.3), т.к.

и ().

3. Функция определена в точке a и в некоторой ее окрестности, существует предел функции при , но этот предел не равен значению функции в точке a :

.

Например, функция (см. рис. 10.4)

Здесь – точка разрыва:

,

Все точки разрыва делятся на точки устранимого разрыва, точки разрыва первого и второго рода.

Определение 10.1. Точка разрыва называется точкой устранимого разрыва , если в этой точке существуют конечные пределы функции слева и справа, равные друг другу:

.

Предел функции в этой точке существует, но не равен значению функции в предельной точке (если функция определена в предельной точке), или функция в предельной точке не определена.

На рис. 10.4 в точке условия непрерывности нарушены, и функция имеет разрыв. На графике точка (0; 1) выколота . Впрочем, этот разрыв легко устранить – достаточно переопределить данную функцию, положив ее равной своему пределу в этой точке, т.е. положить . Поэтому такие разрывы называются устранимыми.

Определение 10.2. Точка разрыва называется точкой разрыва 1-го рода , если в этой точке существуют конечные пределы функции слева и справа, но они не равны друг другу:

.

Говорят, что в этой точке функция испытывает скачок .

На рис. 10.3 функция имеет разрыв 1-го рода в точке . Пределы слева и справа в этой точке равны:

и .

Скачок функции в точке разрыва равен .

Доопределить такую функцию до непрерывной невозможно. График состоит из двух полупрямых, разделенных скачком.

Определение 10.3. Точка разрыва называется точкой разрыва 2-го рода , если, по крайней мере, один из односторонних пределов функции (слева или справа) не существуют или равны бесконечности.

На рис 10.3 функция в точке имеет разрыв 2-го рода. Рассмотренная функция при является бесконечно большой и конечного предела ни справа, ни слева не имеет. Поэтому говорить о непрерывности в такой точке не приходится.

Пример 10.2. Построить график и определить характер точек разрыва:

Решение. Построим график функции f (x ) (рис 10.5).

Из рисунка видно, что исходная функция имеет три точки разрыва: , x 2 = 1,
x 3 = 3. Рассмотрим их по порядку.

Поэтому точке имеется разрыв 2-го рода .

а) Функция определена в этой точке: f (1) = –1.

б) , ,

т.е. в точке x 2 = 1 имеется устранимый разрыв . Переопределив значение функции в этой точке: f (1) = 5, разрыв устраняется и функция в этой точке становится непрерывной.

а) Функция определена в этой точке: f (3) = 1.

Значит, в точке x 1 = 3 имеется разрыв 1-го рода . Функция в этой точке испытывает скачок, равный Dy = –2–1 = –3.

10.4. Свойства непрерывных функций

Вспоминая соответствующие свойства пределов, заключаем, что функция, являющаяся результатом арифметических действий над непрерывными в одной и той же точке функциями, также непрерывны. Отметим:

1) если функции и непрерывны в точке a , то функции , и (при условии, что ) также непрерывны в этой точке;

2) если функция непрерывна в точке a и функция непрерывна в точке , то сложная функция непрерывна в точке a и

,

т.е. знак предела можно вносить под знак непрерывной функции.

Говорят, что функция непрерывна на некотором множестве, если она непрерывна в каждой точке этого множества . График такой функции – непрерывная линия, которая вычеркивается одним росчерком пера.

Все основные элементарные функции непрерывны во всех точках, где они определены .

Функции, непрерывные на отрезке , обладают рядом важных отличительных свойств. Сформулируем теоремы, выражающие некоторые из этих свойств.

Теорема 10.1 (теорема Вейерштрасса ). Если функция непрерывна на отрезке, то она на этом отрезке достигает своих наименьшего и наибольшего значений.

Теорема 10.2 (теорема Коши ). Если функция непрерывна на отрезке, то она на этом отрезке все промежуточные значения между наименьшим и наибольшим значениями .

Из теоремы Коши следует следующее важное свойство.

Теорема 10.3 . Если функция непрерывна на отрезке и на концах отрезка принимает значения разных знаков, то между a и b найдется такая точка c, в которой функция обращается в нуль: .

Геометрический смысл этой теоремы очевиден: если график непрерывной функции переходит с нижней полуплоскости на верхнюю (или наоборот), то по крайней мере в одной точке она пересечет ось Ox (рис.10.6).

Пример 10.3. Приближенно вычислить корень уравнения

, (т.е. приближенно заменить) многочленном соответствующей степени.

Это очень важное для практики свойство непрерывных функций. Например, очень часто непрерывные функции задаются таблицами (данными наблюдений или экспериментов). Тогда используя какой-либо метод можно таблично заданную функцию заменить многочленом. В соответствии с теоремой 10.3 это можно всегда сделать с достаточно высокой точностью. Работать с аналитически заданной функцией (тем более с многочленом) гораздо проще.

10.5. Экономический смысл непрерывности

Большинство функций, используемых в экономике, являются непрерывными и это позволяет высказывать вполне значимые утверждения экономического содержания.

В качестве иллюстрации рассмотрим следующий пример.

Налоговая ставка N имеет примерно такой график, как на рис. 10.7а.

На концах промежутков она разрывна и разрывы эти 1-го рода. Однако сама величина подоходного налога P (рис. 10.7б) является непрерывной функцией годового дохода Q . Отсюда, в частности, вытекает, что если годовые доходы двух людей различаются незначительно, то и различие в величинах подоходного налога, который они должны уплатить, также должны различаться не значительно. Интересно, что обстоятельство воспринимается огромным большинством людей как совершенно естественное, над которым они даже не задумываются.

10.6. Заключение

Под занавес позволим себе небольшое отступление.

Вот как можно графически выразить грустное наблюдение древних:

Sic transit Gloria mundi …

(Так проходит земная слава …)


Конец работы -

Эта тема принадлежит разделу:

Понятие функции

Понятие функции.. все течет и все меняется гераклит.. таблица х х х х y у у у у у..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.


Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» - некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа - кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.


Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Заметьте, что не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно - из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции

.

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I)

1)


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

- односторонние пределы конечны и равны, значит, существует общий предел.

3)

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой - обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами - будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно - функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4-х подобных примеров:

I) Исследуем на непрерывность точку

2) Вычислим односторонние пределы:

, значит, общий предел существует.

Случился тут небольшой курьёз. Дело в том, что я создал немало материалов о пределах функции , и несколько раз хотел, да несколько раз забывал об одном простом вопросе. И вот, невероятным усилием воли таки заставил себя не потерять мысль =) Скорее всего, некоторые читатели-«чайники» сомневаются: чему равен предел константы? Предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь, в правостороннем пределе - предел единицы равен самой единице.

- общий предел существует.

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция .

Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование:

I) Исследуем на непрерывность точку

2) Найдём односторонние пределы:

Обратите внимание на типовой приём вычисления одностороннего предела : в функцию вместо «икса» мы подставляем . В знаменателе никакого криминала: «добавка» «минус ноль» не играет роли, и получается «четыре». А вот в числителе происходит небольшой триллер: сначала в знаменателе показателя убиваем -1 и 1, в результате чего получается . Единица, делённая на , равна «минус бесконечности», следовательно: . И, наконец, «двойка» в бесконечно большой отрицательной степени равна нулю: . Или, если ещё подробнее: .

Вычислим правосторонний предел:

И здесь - вместо «икса» подставляем . В знаменателе «добавка» снова не играет роли: . В числителе проводятся аналогичные предыдущему пределу действия: уничтожаем противоположные числа и делим единицу на:

Правосторонний предел бесконечен, значит, функция терпит разрыв 2-го рода в точке .

II) Исследуем на непрерывность точку

1) Функция не определена в данной точке.

2) Вычислим левосторонний предел:

Метод такой же: подставляем в функцию вместо «икса» . В числителе ничего интересного - получается конечное положительно число . А в знаменателе раскрываем скобки, убираем «тройки», и решающую роль играет «добавка» .

По итогу, конечное положительное число, делённое на бесконечно малое положительное число , даёт «плюс бесконечность»: .

Правосторонний предел, как брат близнец, за тем лишь исключением, что в знаменателе выплывает бесконечно малое отрицательное число :

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке .

Таким образом, у нас две точки разрыва, и, очевидно, три ветки графика. Для каждой ветки целесообразно провести поточечное построение, т.е. взять несколько значений «икс» и подставить их в . Заметьте, что по условию допускается построениесхематического чертежа, и такое послабление естественно для ручной работы. Я строю графики с помощью проги, поэтому не имею подобных затруднений, вот достаточно точная картинка:

Прямые являются вертикальными асимптотами для графика данной функции.

Ответ : функция непрерывна на всей числовой прямой кроме точек , в которых она терпит разрывы 2-го рода.

Более простая функция для самостоятельного решения:

Пример 9

Исследовать на непрерывность функцию и выполнить схематический чертёж.

Примерный образец решения в конце, который подкрался незаметно.

До скорых встреч!

Решения и ответы:

Пример 3: Решение : преобразуем функцию: . Учитывая правило раскрытия модуля и тот факт, что , перепишем функцию в кусочном виде:


Исследуем функцию на непрерывность.

1) Функция не определена в точке .


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком. Скачок разрыва: (две единицы вверх).

Пример 5: Решение : каждая из трёх частей функции непрерывна на своём интервале.
I)
1)

2) Вычислим односторонние пределы:


, значит, общий предел существует.
3) - предел функции в точке равен значению данной функции в данной точке.
Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.
II) Исследуем на непрерывность точку

1) - функция определена в данной точке. функция терпит разрыв 2-го рода, в точке

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия - Область определения функции . Активное обсуждение данного понятия началось на первом же уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает области определения основных функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, логарифма, синуса, косинуса. Они определены на . За тангенсы, арксинусы, так и быть, прощаю =) Более редкие графики запоминаются далеко не сразу.

Область определения - вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения - это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: - значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения - там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статье Графики и свойства элементарных функций .

Выбор редакции
Технологии Новые идеи появляются каждый день. Одни из них остаются на бумаге, другие же получают зеленый свет - их тестируют и при...

Пояснительная записка Данное занятие было составлено и проведено к 69-летию победы, т. е., относится к лексической теме «День Победы»....

К сожалению, в школе нас не всегда этому учат. А ведь очень многих интересуют правила поведения в кругу друзей и в обществе малознакомых...

Одной из самых актуальных проблем для простых интернет-пользователей и владельцев сайтов / форумов является массовая рассылка . Со спамом...
Вопрос, касающийся ритуалов на кладбище – колдовской закуп. Я маг Сергей Артгром расскажу что такое закуп в ритуалах черной магии....
б. еТЛЙО нБЗЙС ОЕЧЕТПСФОЩИ УПЧРБДЕОЙК оБЫБ ЦЙЪОШ УПУФПЙФ ЙЪ УПВЩФЙК. зМПВБМШОЩИ, ВПМШЫЙИ, НБМЕОШЛЙИ Й УПЧУЕН НЙЛТПУЛПРЙЮЕУЛЙИ. хРБМ...
К огромному сожалению, такое явление, как повышенная нервная возбудимость, стало на сегодняшний день нормой. Эта проблема встречается как...
В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...
Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...