Полимеры в медицине. Презентация на тему "полимеры"


Полимеры Матвеев Д. 11 «Б»

Классификация полимеров Полисахариды Белки Крахмал Целлюлоза Натуральный каучук Гуттаперча Нуклеиновые кислоты Биополимеры Полиизопрены

Классификация полимеров Синтетические: Искусственные: Каучуки(СК) Волокна -хлопок -вискоза -шерсть -ацетатный шелк -лен -«штапель» и др. Пластмассы

Основные понятия химии полимеров полимер макромолекула мономер структурное звено макромолекулы степень полимеризации макромолекулы молекулярная масса макромолекулы молекулярная масса полимера геометрические формы макромолекул

Полимер. Макромолекула Полимерами называются вещества, состоящие из больших молекул цепного строения (от греческого «поли»-много и «мерос»-часть). Молекула полимера называется макромолекулой (от греческого «макрос»- большой, длинный)

Мономер, структурное звено Мономеры это вещества, из которых образуются полимеры. Они содержат: -кратную связь СН 2 = СH–CH 3 -одну или несколько функциональных групп NH 2 – CH 2 – COOH Структурное звено это многократно повторяющаяся в макромолекуле группа атомов. ...-CH 2 -CHCl- CH 2 -CHCl -CH 2 -CHCl-CH 2 -CHCl-CH 2 -CHCl-...

Степень полимеризации Молекулярная масса Степень полимеризации (n) - это число, показывающее сколько молекул мономера соединилось в макромолекулу. Молекулярная масса макромолекулы связана со степенью полимеризации соотношением: М(макромолекулы) = M(звена)х n где n - степень полимеризации, M - молекулярная масса звена Молекулярная масса и степень полимеризации полимера являются усредненными величинами: M ср. (полимера) = M (звена)х n ср.

Полимеризация Полимеризация это образование полимера без выделения низкомолекулярных продуктов. Мономеры полимеризации-соединения с кратными связями. Стадии полимеризации: - инициирование -рост -обрыв цепи. Схема полимеризации этилена: nCH 2 = CH 2  (-CH 2 – CH 2 -) n Сополимеризация это полимеризация одновременно двух или нескольких мономеров.

Классификация

Геометрическая форма макромолекул Линейная Разветвленная

Поликонденсация При поликонденсации образуются: - полимер и - низкомолекулярное соединение (чаще всего - вода). Мономеры содержат минимум две функциональные группы. Схема получения лавсана из терефталевой кислоты и этиленгликоля: n HO OC-C 6 H 4 - COOH + n HO -CH 2 CH 2 - OH   HO-(-CO-C 6 H 4 -CO-O-CH 2 CH 2 -O-)-H + (n-1) H 2 O

Поликонденсацией называют реакцию образования высокомолекулярных веществ в результате конденсации многих молекул, сопровождающейся выделением простых веществ (воды, спирта, углекислого газа, хлористого водорода и т. д.). Процесс поли конденсации не является самопроизвольным процессом и требует энергии из вне.В отличие от реакции полимеризации масса получаемого полимера меньше массы

Развернутые формулы Фенолформальдегидная смола Полипропилен

Пластмассы(термореактивные) Применение

Применение Новолаки- применяют для производства лаков, прессовочных порошков. Резолы(пространственное)-в производстве пластмасс с наполнителями. Фенопласты (пропитование): - Ткани(текстолит),шарикоподшибники, шестерни для машин.

Бумаги(гетинакс):детали машин, телевизионная и телефонная аппаратура. -Очистка хлопка. -Волокнит: тормозные накладки для машин, мотоциклов, ступеньки для экскалаторов. -Стеклянная ткань и стеклянные волокна. -Стеклопласты: детали больших размеров(автоцистерны) -древесная мука Карболит: Телефонные аппараты, электрические контактные платы. Картинки

Ручки ножей часто делают из гетинакса Текстолит на производстве Стеклопласты активно используются в окнах для общественного транспорта

Карболит(из него делается множество электронных плат) Карболит на производстве Синтетические волокна

Биополимеры

Полиэтилентерефталат

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Новейшая область химии Новейшая область химии - химия высокомолекулярных соеди­нений- дает медицине возможность подняться на еще одну ка­чественно высшую ступень. Синтетические полимеры в течение ко­роткого периода времени вторглись в мир человека, поэтому XX век принято называть «веком полимеров». Началом применения полимерных материалов в медицине сле­дует считать 1788 г., когда А. М. Шумлянский применил каучук. Fraenkel (1895) впервые использовал искусственный полимер-целлулоид для закрытия костных дефектов после операций на черепе, что положило начало аллопластике - использованию раз­личных материалов для замены живых тканей. Большой опыт, накопленный многими исследователями по при­менению полимеров в различных областях медицинской практики, позволяет условно разделить полимеры в зависимости от того, ка­кие требования предъявляет к ним медицина:

3 слайд

Описание слайда:

II группа. Полимерные материалы, контактирующие с тканями организма, а также с веществами, которые в него вводятся: - тара для упаковки и хранения лекарственных средств, крови и плазмозаменителей; - полимеры, применяемые в стоматологии (кроме пломб); - хирургический инструментарий, шприцы; - узлы и детали для медицинских аппаратов и приборов, в том числе - полупроницаемые мембраны.

4 слайд

Описание слайда:

I группа. Полимерные материалы, предназначенные для вве­дения в организм: - «внутренние» протезы, пломбы, искусственные органы; - клеи; - шовный и перевязочный материалы; - плазмо - и кровезаменители, дезинтоксикаторы, интерфероногены, антидоты; - лекарственные препараты, изготовленные на основе поли­меров (в том числе - ионитов); - полимеры, используемые в технологии лекарственных форм (защитные пленки, капсулы и микрокапсулы, вспомогательные вещества и т. п.).

5 слайд

Описание слайда:

III группа. Полимерные материалы, не предназначенные для введения и не контактирующие с веществами, вводимыми в орга­низм: - полимеры, применяемые в анатомии и гистологии; - предметы ухода за больными; - лабораторная посуда, штативы и т. п.; - оборудование операционных и больниц; - оправы и линзы для очков; - протезно-ортопедические изделия (в том числе - обувь); - больничные одежда, белье, постельные принадлежности.

6 слайд

Описание слайда:

Полимеры 1-й группы Полимеры 1-й группы предназначены для имплантации в организм на различные сроки. Сюда относятся протезы кровеносных сосудов, клапаны сердца, протезы пищевода, мочевого пузыря, уретры, хрусталика глаза, протезы для замещения дефектов скелета и мягких тканей, штифты, пластинки для фиксации костей при переломах, полимерные сетчатые каркасы для соединения кишок, сухожилий, трахей. К полимерам, применяемым для изготовления протезов внутренних ор­ганов, предъявляются жесткие требования. Главнейшие из них - длитель­ное сохранение основных физико-механических свойств в условиях посто­янного воздействия ферментативной системы живого организма; биологи­ческая инертность, обусловливающая легкую адаптацию организма к имп­лантанту, проявляющуюся в его инкапсуляции. Наиболее успешно применя­ются полиакрилаты - полимеры на основе производных акриловой и метакриловой кислот для целей аллопластики.

7 слайд

Описание слайда:

У нас в стране с 1946 г полиметилакрилат применяется в клинике Центрального института и ортопедии при артропластике тазобедренного сустава и остеосинтезе, для замещения дефектов костей черепа. В 1952 г. М. В. Шеляховский при операциях грыж передней брюшной стенки применил перфорированные пла­стинки из фторопласта-4. В последующие годы для этих же це­лей, а также для пластики диафрагмы использовали капроновую сетку (поликонденсат аминокапроновой кислоты) Были получены также более совершенные сосудистые протезы из лавсана, синтезируемого методом поликонденсации терефталевой кислоты с этиленгликолем, и фторопласта- 3 и- 4

8 слайд

Описание слайда:

Силиконовый каучук Важнейшим представителем класса кремнийорганических полимеров является полидиметилсилоксан (силиконовый каучук). Одним из самых примечательных свойств силиконовых каучуков явля­ется их физиологическая инертность, они не имеют ни запаха, ни вкуса, обладают непревзойденными свойствами по проницаемости по отношению к кислороду и углекислому газу, что позволяет их использовать в качестве мембран для оксигенаторов. Интересным качеством вулканизаторов из си­ликоновых каучуков является их способность не прилипать к липким по­верхностям. Они обладают удовлетворительной совместимостью с кровью, а при модификации поверхности не вызывают свертывания крови. Силиконовые резины на основе полидиметилсилоксана не вызывают тканевых реакций, поэтому их используют как материалы для имплантации.

9 слайд

Описание слайда:

Полиуретаны Полиуретаны - продукты синтеза полиизоцианатов с полиспир­тами. В реакции участвует как минимум два полифункциональных мономера, один из которых имеет подвижный водород, а другой – группы, способные принять его Полиуретаны имеют в своем составе сильно полярные уретановые группы О_С_NH_. Их свойства в значительной мере определяются расстоянием между уретановыми группами в макромолекуле. Известно большое количество полимеров этого класса соеди­нений с самыми разнообразными свойствами. Этим полиуретаны завоевали репутацию достаточно перспективных для применения в медицине. Они легче воды, устойчивы к действию щелочей и сла­бых кислот. Распространение получили пенополиуретаны - губчатые пла­стики. Выпускаются жесткие и эластичные пенопласты с разными по величине порами и различной механической прочностью. Они чрезвычайно легки, эластичны, структуростабильны, химически и физиологически инертны, хорошо впитывают влагу, применяются для пломбировки околопочечного пространства при урологических операциях.

10 слайд

Описание слайда:

Пломбировочные материалы на основе акриловых сополимеров. Быстротвердеющие пластмассы па основе акриловых со­полимеров (со­полимеры – полимеры, содержащие несколько типов мономерных звеньев и получаемые путем совместной полимеризации двух или большего числа мономеров) явились одними из первых сополимерных пломбировочных материалов. Начиная с 50-х годов у нас в стране и за рубежом были выпущены различные марки этих материалов: портекс, стеллон, норакрил. Возможность затвердения этих композиций при комнатной температуре обусловлена введением в их состав окислительно-восстановительных систем, состоящих из инициаторов и активаторов.

11 слайд

Описание слайда:

Пломбировочные материалы на основе эпоксидных сополимеров Вопросы создания и клинического изучения пломбировоч­ных материалов на основе эпоксидных сополимеров доста­точно полно изложены в монографии Б. Я. Горового и В. С. Иванова (1973). Впервые эпоксидные композиции были разработаны и предложены для зубоврачебной практики швейцарским доктором II. Кастан и другими сотрудниками фирмы «де Трей» в 1934-1938 гг. Эпоксидные смолы получают в результате реакции поликонденсации энихлоргидрина с дифенилолпропаном или резорцином в различных агрегатных состояниях - в виде жидких, вязких и твердых продуктов. В случае использо­вания дифенилолпропана получаются диановые смолы, а в случае использования резорцина резорциновые. В этой связи заслуживает упоминания имя русского уче­ного А. ТТ. Дианина, впервые получившего и 1891 г. это соединение: в его честь эти смолы и получили название диановые. В различных отраслях промышленности в настоящее вре­мя применяются главным образом диановые смолы, кото­рые в отличие от резорциновых обладают меньшей ток­сичностью, большей доступностью и дешевизной исход­ных продуктов синтеза. Эпоксидно-диановые смолы обладают наиболее универсальными свойствами (по сравнению с другими эпоксидными смолами) и получаются из дешевого и весьма доступного сырья (продуктов переработки нефти). Полезные свойства, определяющие широкое применение эпоксидно-диановых смол как основы для разнообразных материалов (связующие, клеи, покрытия, герметики и др.), могут быть охарактеризованы следующим образом: высокая адгезия (явление соединения (прилипания) приведенных в контакт поверхностей фаз) ко всем полярным материалам (металлы, стекло, керамика, дентин и эмаль зубов). Это свойство эпоксидно-диановых смол обеспечивается наличием гидроксильных и простых эфирных группировок. механическая прочность, обусловленная высокой концентрацией сравнительно жестких дифенилолпропановых блоков, содержащих ароматические ядра, в сочетании с группировкой__O__CH2__CH__CH2__O__ .

12 слайд

Описание слайда:

Используемые сайты: https://studfiles.net/preview/4081600/ http://medbe.ru/videoarchive/nauka-i-tekhnologii-v-meditsine/polimery-v-meditsine/ https://vuzlit.ru/915800/primenenie_polimerov_meditsine

13 слайд

Описание слайда:

Слайд 2

Определение полимеров

ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. Термин «полимеры введен Й. Я. Берцелиусом в 1833.

Слайд 3

Классификация

По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.

Слайд 4

Строение

ПОЛИМЕРЫ - вещества, молекулы которых состоят из большого числа структурно повторяющихся звеньев - мономеров. Молекулярная масса полимеров достигает 10 6, а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам приближаются к коллоидным системам.

Слайд 5

По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные, имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Слайд 6

Реакция полимеризации

Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

Слайд 7

Получение полипропилена

n СН2 = СН → (- СН2 – СН-)n || СН3 СН3 пропилен полипропилен Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.

Слайд 8

Реакция поликонденсации

Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

Слайд 9

Получение крахмала или целлюлозы

nС6Н12О6 → (- С6Н10О5 -)n + Н2О глюкоза полисахарид

Слайд 10

Классификация

Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

Слайд 11

Применение

Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов. Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Полимеры (греч. πολύ- много; μέρος часть) неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Как правило, полимеры вещества с молекулярной массой от нескольких тысяч до нескольких миллионов. Мономер (др.-греч. μόνος один; μέρος часть) это низкомолекулярное вещество, образующее полимер в реакции полимеризации. Мономерами также называют повторяющиеся звенья (структурные единицы) в составе полимерных молекул.


Полимеризацииполиконденсации Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических превращений. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.


Полимеризацией Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.




Особые механические свойства Особые механические свойства: эластичность эластичность способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки); малая хрупкость стеклообразных и кристаллических полимеров малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло); способность макромолекул к ориентации способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).


Особенности растворов полимеров: высокая вязкость раствора при малой концентрации полимера; растворение полимера происходит через стадию набухания. Особые химические свойства: способность резко изменять свои физико- механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.). Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают гибкостью.


Природные искусственные синтетические Получаются в ходе фото-, биосинтеза из простейших соединений (H 2 O, CO 2, NH 4) под действием ферментов и УФ-лучей Получаются химической модификацией природных полимеров(обычно обрабатывают природные полимеры кислотами, щелочами, ангидридами кислот, солями и др. реагентами. Получают синтезом из простейших низкомолекулярных соединений – мономеров. Целлюлоза, крахмал, лигнин, гемицеллюлозы, белки(глоубилин, казеин, альбумин, гемоглобин), натуральный каучук, графит, алмаз и др. Ацетаты, целлюлозы НЦ, нитраты, ксантогенаты целлюлозы, метил-, этил-, карбок симетилцеллюлоза КМЦ и др. Полиэтилен ПЭ, полипропилен ПП, поливинилхлорид ПВХ, полистирол ПС, полиакрилонитрил ПА, поливинилацетат ПВА, поливиниловый спирт ПВС и др.


Природные искусственные Органические полимеры подразделяются на природные и искусственные. К природным полимерам относятся: целлюлоза, белки, крахмал, натуральный каучук, природные смолы (копал, канифоль, шеллак, янтарь). Природные полимеры редко применяются в строительстве. Широкое распространение получили искусственные полимеры, получаемые в результате синтеза простых низкомолекулярных соединений - мономеров.






Гетероцепные полимеры Гетероцепные полимеры, в основных цепях которых кроме атомов углерода содержатся атомы кислорода, азота, серы, реже фосфора и других элементов. К этой группе полимеров относятся полиэфиры, полиамиды, полиуретаны, полиэпоксидные соединения.


Элементоорганические полимеры Элементоорганические полимеры, содержащие в основных цепях атомы кремния, алюминия, титана и других элементов, например, кремнийорганические соединения. Эти полимеры имеют в макромолекуле кремний- кислородные связи, называемые силоксановыми.



Полимеры Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях. Основные типы полимерных материалов пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов. Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Государственное бюджетное профессиональное образовательное учреждение

Московской Области

«Московский областной медицинский колледж №4»

Сергиево-Посадский филиал

Индивидуальный итоговый проект по учебной дисциплине

«Химия»

Тема: Полимеры в нашей жизни

Выполнил:

студент 22-15 группы Коваленко Н.Е.

Проверил:

преподаватель естественных дисциплин

Томилова Т.В.

г. Сергиев Посад

2017 г.

Содержание

Введение…………………………………………………………………………….3

Глава 1. Классификация и общие свойства высокомолекулярных соединений………………………………………………………………………….4

Глава 2. Использование полимеров в современной жизни человека……..9

2.1. Полимеры в медицине……………………………………………………….9

2.2. Полимеры в машиностроении…………………………………………...…10

2.3. Полимеры в сельском хозяйстве………………………………………...…11

Глава 3. Опасность использования полимеров для человека и окружающей среды……………………………………………………………………………......13

Заключение………………………………………………………………...………16

Список использованных источников…………………………………………..17

Приложения…………………………………………………………………….....18

Введение

Высокомолекулярные соединения или полимеры – это сложные вещества с большими молекулярными массами (порядка сотен, тысяч, миллионов), молекулы которых построены из множества повторяющихся элементарных звеньев, образующихся в результате взаимодействия и соединения друг с другом одинаковых или разных простых молекул – мономеров.

Полимерные материалы в жизнедеятельности человека имеют огромное значение. Поэтому вопрос об их использовании и дальнейшей утилизации особо актуален.

«Широко простирает химия руки свои в дела человеческие. Куда ни посмотрим, куда ни оглянемся, везде отражаются перед очами нашими успехи её прилежания»

Полимерные вещества внедрились во все сферы человеческой деятельности – технику, здравоохранение, быт. Ежедневно мы сталкиваемся с различными пластмассами, резинами, синтетическими волокнами. Полимерные материалы обладают многими полезными свойствами: они высокоустойчивы в агрессивных средах, хорошие диэлектрики и теплоизоляторы. Некоторые полимеры обладают высокой стойкостью к низким температурам, другие - водоотталкивающими свойствами и так далее.

Полимерами природных высокомолекулярных соединений могут служить крахмал, целлюлоза, построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы), а также белки, элементарные звенья которых представляют собой остатки аминокислот, сюда же относятся природные каучуки и другие органические вещества.

Сейчас синтетические полимеры, выпускаемые в мире, примерно на 75% состоят из продуктов полимеризации. Применяются они в строительстве и радиотехнике, машиностроении и производстве бытовых изделий.

Целью данной работы является изучить полимеры, указать их строение, свойства и области применения.

Для этого мне предстоит решить следующие задачи:

    Изучить литературу по данной теме.

    Показать значимость полимерных материалов для человека.

    Выявить вред и пользу использования полимеров в жизни человека.

Глава 1. Классификация и общие свойства высокомолекулярных соединений

«Все мы связываем с химической наукой прогресс в познании окружающего
мира, новые методы его перестройки и усовершенствования. И не может быть
в наши дни специалиста, который мог бы обойтись без знания химии.»

Полимер - это уникальное вещество, удивительный класс химических соединений, обладающий большим разнообразием в природе, буквально пронизывающий её полностью. Считается, что полимеры, будучи неживыми веществами, легли в основу жизни, ведь они могут обмениваться информацией между собой, самовоспроизводиться благодаря своей изменчивости. Многообразие физического строения, гибкость и изменчивость пространственной структуры и молекулярно-химического состава, способствуют присутствию как в минералах и пластиках, так и в полисахаридах и белках. Столь важная и сложная человеческая ДНК и РНК, отвечающие за передачу информации по наследству, не обходятся без полимеров.

Полимерные молекулы представляют собой обширный класс соединений, основными отличительными характеристиками которых являются большая молекулярная масса и высокая конформационная гибкость цепи. Можно с уверенностью сказать, что и все характеристические свойства таких молекул, а также связанные с этими свойствами возможности их применения обусловлены вышеуказанными особенностями. Большой интерес, таким образом, представляет исследование возможности априорного предсказания химического и физического поведения полимера на основании анализа его строения. Такую возможность предоставляют методы молекулярной механики и молекулярной динамики, реализованные в виде компьютерных расчетных программ.

Термин полимеры происходит от греческого «polymeres» - состоящий из многих частей. Первые упоминания о синтетических полимерах были более 200 лет назад. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики не знали, что продукты, которые они получают, являются полимерами. Великий русский химик А.М.Бутлеров изучал связь полимерных материалов и создал теории химического строения органических соединений. На ее основе и возникла химия полимеров. Главной причиной бурного развития химии полимеров стало потребность в новых недорогих материалах и развитие технического процесса.

По происхождению полимеры делят на

1. Природные - (полисахариды, белки, нуклеиновые кислоты, каучук, гуттаперча). Природные полимеры образуются в процессе биосинтеза в клетках живых организмов и растений. С помощью специальных методов они могут быть выделены из растительного и животного сырья.

2 . Химические:

- Искусственные – полученные из природных путем химических превращений (целлулоид, ацетатное, медноамиачное, вискозное волокна).

- Синтетические – полученные из мономеров (синтетические каучуки, волокна, капрон, лавсан, пластмассы). Синтетические полимеры получают в результате химических реакций. В основном синтетические полимеры получают из продуктов переработки нефти и газа. На специальных заводах сначала получают составляющие, которые далее в реакции соединяются в длинные цепи.

По составу:

1 . Органические

2. Элементоорганические – делятся на три группы: основная цепь неорганическая, а ответвления органические; основная цепь содержит углерод и другие элементы, а ответвления органические; основная цепь органическая, а ответвления неорганические.

3. Неорганические – имеют главные неорганические цепи и не содержат органических боковых ответвлений (элементы верхних рядов III – VI групп).

По структуре макромолекулы:

1. Линейные – полимеры, располагающиеся в макромолекуле в виде открытой цепи или вытянутой в линию последовательности.

2. Разветвленные - полимеры , в основной цепи которых имеются статистически или регулярно расположенные ответвления.

3. Сетчатые (низко эластичные) - полимеры со сложной топологической структурой, образующие единую пространственную сетку.

Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света, и радиации, а также путем вулканизации.

Линейные полимеры обладают способностью образовывать высокопрочные волокна и плёнки, способные к большим, длительным деформациям они как правило гибкие, мягкие и тягучие. Все разветвленные полимеры наоборот прочные и твердые.

По химическому составу:

1. Гомополимеры (содержат одинаковые мономерные звенья).

2. Гетерополимеры или сополимеры (содержат разные мономерные звенья).

Полимерные молекулы, состоящие из одинаковых мономерных звеньев, называются гомополимерами, например, поливинилхлорид, поликапроамид, целлюлоза, а состоящие из различных звеньев – гетероплимеры.

По составу главной цепи:

1. Гомоцепные (в главную цепь входят атомы одного элемента).

2. Гетероцепные (в главную цепь входят разные атомы)

По пространственному строению:

1. Стереорегулярные – макромолекулы построены из звеньев одинаковой или разной пространственной конфигурации, чередующихся в цепи с определенной периодичностью.

2. Нестереорегулярные (атактические) – с произвольным чередованием звеньев разной пространственной конфигурацией.

По физическим свойствам:

1. Кристаллические (имеют длинные стереорегулярные макромолекулы)

2. Аморфные

По способу получения:

1. Полимеризационные.

2. Поликонденсационные.

По свойствам и применению:

1. Пластмассы.

2. Эластомеры.

3. Волокна.

Общие свойства полимеров (характерные для большинства ВМС).

1. ВМС не имеют определенной температуры плавления, плавятся в широком диапазоне температур, некоторые разлагаются ниже температуры плавления.

2. Не подвергаются перегонке, т. к. разлагаются при нагревании.

3. Не растворяются в воде или растворяются с трудом.

4. Обладают высокой прочностью.

5. Инертны в химических средах, устойчивы к воздействию окружающей среды.

Полимеры бывают в нескольких агрегатных состояниях: твердом, мягком и текучем как жидкость.

Свойства полимеров.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высоко ориентированные волокна и пленки , способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов . Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко текучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °Ñ переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °Ñ - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °Ñ. Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими к одной цепи.

Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.

Глава 2. Использование полимеров в современной жизни человека

2.1. Полимеры в медицине

«Роль наук служебная, они составляют средство для достижения блага»

Медицина является беспрестанно развивающейся отраслью, где находят применение самые различные материалы и технологии, свое место в медицине нашли и полимеры. На сегодняшний день полимеры в медицине применяются практически повсеместно.

Перспективы использования полимеров в медицинской практике неограниченны. Из устойчивых к воздействию высокой температуры полимеров производят шприцы разового применения, системы для переливания крови, аппараты искусственного кровообращения и искусственной почки, шпатели, аппликаторы.

В данный момент около 12% медицинских изделий, выпускаемых в Российской Федерации, производится на 28-ми предприятиях, которые находятся на территории Московской области.

В России и за рубежом широким фронтом ведутся работы по синтезу физиологически активных полимерных лекарственных веществ, полусинтетических гормонов и ферментов, синтетических генов. Большие успехи достигнуты в создании сополимерных заменителей плазмы человеческой крови. Сейчас уже не редкость, когда человеку в случае необходимости восполняют до 30% крови растворами медицинских сополимеров. Синтезированы и с хорошими результатами применяются в клинической практике эквиваленты различных тканей и органов человека: костей, суставов, зубов.

Наибольшее распространение в данной сфере получили изделия, выполненные на основе высокомолекулярных соединений и представляющие собой пластмассы. Из них изготавливают искусственные сосуды, суставы и иные изделия, имитирующие ткани и органы человеческого организма. Из полиамидов, кроме всего прочего, изготавливают хирургические нити, а из полиуретанов – камеры искусственного сердца.

Медицинские полимеры и сополимеры используются для культивирования клеток и тканей, хранения и консервации крови, кроветворной ткани - костного мозга, консервации кожи и многих других органов. В терапии широко используются сополимеры - ионообменники (ионообменные смолы) для удаления из организма щелочных металлов, радиоактивных элементов, для введения в организм дополнительных количеств необходимых ионов металлов. Изучается возможность применения ионообменников для коррекции электролитного и кислотно-щелочного равновесия биологических сред при сердечной, печеночной и почечной недостаточности. На основе синтетических сополимеров создаются противовирусные вещества, пролонгаторы важнейших лекарственных средств, противораковые препараторы.

Современные биосовместимые полимеры используются также для создания лекарственных пленок, различных мазей, оболочек для микрокапсул.

Полимеры используют и в процессе производства различной медицинской техники, специальной посуды, упаковок для лекарственных средств и инструментов. Из полиэтилена высокой плотности изготавливают пробирки, стерилизаторы, пипетки, а фторопласт-4 является основой для производства медицинских инструментов, катетеров. Полистирол представляет собой превосходный материал для изготовления одноразовых шприцов и упаковок для лекарств.

Широко применяются полимеры в медицине благодаря своей экономичности, кроме того, многие изделия обладают высокой степенью устойчивости к негативному воздействию различных сред. Полимеры ложатся в основу так необходимых в медицине одноразовых изделий.

Применение в сфере медицины полимеров в совокупности с современными технологиями позволило сделать большой шаг вперед в вопросе имплантации и спасения жизни людей, когда их здоровью существует реальная угроза.

2.2. Полимеры в машиностроении

Сегодня можно говорить по меньшей мере о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизировано; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.

Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, например, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.

Еще в 1930-е годы Генри Форд исследовал возможность создания полимерных материалов на основе сои для последующего использования в автомобилях. Однако настоящее развитие исследования в области разработки биополимеров получили во второй половине XX в. В 1970-80-е годы в США, Италии, Германии были созданы синтетические полимерные материалы с активным наполнителем на основе крахмала для применения в качестве упаковочных материалов.

Отличительной чертой этих материалов стала способность к биодеструкции в сочетании с высокими эксплуатационными характеристиками синтетического полимера. На сегодняшний день в мире успешно внедрено более 100 видов биоразлагаемых полимеров. Пока объемы их производства составляют всего около 0.1% общемирового производства полимеров всех видов. В 2010 г. объем их производства составлял около 700 тыс. т., однако уже в 2011 г. по оценкам некоторых экспертов он превысил 1 млн т., а в 2015 г. достигнет 1.7 млн. т.

Современные объемы выпуска биополимеров подтверждают, что технологии их получения имеют значительный потенциал промышленного освоения и коммерциализации. Рынок биоразлагаемых полимеров является одним из наиболее быстроразвивающихся сегментов мировой экономики. Их производство уже является неотъемлемой частью национальных агрохимических комплексов Японии, США, стран Евросоюза.
Наибольшим спросом на биополимерном рынке пользуются пленки, используемые в сельском хозяйстве, где важны биоразлагае-мость и компостирование, а также в отрасли упаковки.

Залогом успешного развития производства биоразлагаемых полимеров является принятие многочисленных законодательных мер, обязывающих производителей осуществлять рециклинг полимерной упаковки в целях ее повторного использования и освобождающих биополимерную компостируемую упаковку от уплаты соответствующих налогов. Так, для развития рынка биоразлагаемых полимеров в Европе приняты специальные государственные программы по раздельному сбору компостируемых отходов. Преимущества биопластиков, связанные с более низкой платой за хранение отходов, неоспоримы. С 2000 г. в ЕС принят стандарт БЫ 13432, регламентирующий требования к биоразлагаемым полимерам. Кроме того, в июне 2008 г. Европейский Парламент утвердил рамочную директиву об отходах, определяющую последовательность выбора способов переработки отходов, предотвращение образования отходов, вторичное использование продукции и материалов, извлечение энергии и утилизация отходов.

Одними из наиболее перспективных биоразлагаемых материалов являются алифатические полиэфиры на основе молочной кислоты - полилактиды (ПЛА, РLА), получаемые поликонденсацией молочной кислоты или полимеризацией лактида.

В России производство биоразлагаемых полимеров пока находится в начальной стадии и, по оценкам ряда экспертов, на начало 2011 г. составило не более 6.5 тыс. тонн в год. При этом подавляющее число производителей используют зарубежные разработки. Так, компания «Евробалт» с 2008 г. производит упаковочные материалы из полиэтилена с использованием оксоразлагаемой присадки «d2w»; фирма «ТИКО-пластик» выпускает биоразлагаемую упаковочную продукцию на основе полимеров с добавлением импортных катализаторов; фирма «Тампо-Механик» выпускает мешки и пленки из полимера Ecovio фирмы BASF. Тем не менее, в России имеются и собственные разработки в области биоразлагаемых полимеров. Фирма «БиоЭкоТехнология» ведет самостоятельные исследования и занимается внедрением собственных биоразлагаемых добавок к полимерам на территории России и СНГ.

Исследованиями в этой области занимается большое число научно-исследовательских лабораторий в Москве, Пущине, Красноярске, Уфе и других городах. Проводятся испытания отдельных образцов материалов на основе биополимеров, имеющих большое значение для медицины в качестве имплантантов и химических контейнеров для направленной доставки лекарственных препаратов. Однако для получения товаров народного потребления, прежде всего упаковочных материалов, биоразлагаемые полимеры в России пока используются недостаточно широко. Это связано с низкой популярностью идеи использования биополимеров как у производителей, так и у потребителей различных упаковок, а также недостаточным вниманием со стороны законодательных властей. Между тем, проблема захоронения и переработки твердых бытовых отходов, значительную часть которых составляют полимеры, уже достаточно остро стоит во всем мире, в том числе в России. Поэтому в ближайшее время ожидается существенный рост производства биополимерных материалов для самых различных нужд.

Не вызывает сомнений, что в ближайшие годы производство полимеров, получаемых из возобновляемых ресурсов, и их ассортимент будут расширяться, а цена и характеристики - приближаться к уровню традиционных полимерных материалов.

Заключение

И в заключении, подводя итоги, необходимо отметить, что с начала 20-х годов ХХ века развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Трудно переоценить значение полимеров в нашей жизни. Полимеры окружают нас буквально со всех сторон: из них состоят пакеты в супермаркетах и одноразовая посуда, корпуса телефонов и другой бытовой техники, автомобильные шины и оконные рамы. Это важнейший материал, из которого сделаны постоянно используемые нами предметы. С другой стороны, полимеры являются естественными компонентами всех живых организмов, в том числе и человека.

К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число полимеров получают синтетическим путем на основе простейших соединений элементов природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений.

Полимеры широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта. При этом уместно отметить, что в последние годы несколько изменилась и функция полимерных материалов в любой отрасли, и способы их получения. Полимерам стали доверять все более и более ответственные задачи. Из полимеров стали изготавливать все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, и в то же время все чаще полимеры стали применяться в изготовлении крупногабаритных корпусных деталей машин и механизмов, несущих значительные нагрузки.

Список использованных источников

    Аксенова А.А. Энциклопедия для детей. Том 17. Химия. – М: Издательство: Аванта+. – 2007. - 640 с.

    Белявский М. Т. Всё испытал и всё проник. – М: Издательство: Московский университет, 1990. - 222 с.

    Добротин Д.Ю. Настоящая химия для мальчиков и девочек. – М: Издательство: Интеллект-Центр. 2010. - 96 с.

    Ершов В.В., Никифоров Г.А., Володькин А.А. Пространственно-затруднённые фенолы. – М.: Химия, 1998. - 352 с.

    Карякин Ю.В, Ангелов И.И. Чистые химические вещества. – М.: Химия, 1996. - 408 с.

    Каргин В. А., Г. Л. Слонимский. Краткие очерки по физикохимии полимеров. – М: Издательство: МГУ, 1999. - 232 с.

    Леенсон И.А. Удивительная химия. – М: Издательство: Энас, 2009. - 168 с.

    Научная библиотека. КиберЛенинка. [Интернет ресурс] адрес:

    Птицына О.А. и др. Лабораторные работы по органическому синтезу. – М.: Просвещение, 1997. - 256 с.

    Савина Л.А. Я познаю мир. Химия. – М: Издательство: ООО "Издательство АСТ", 2007. - 400 с.

    Тасекеев М. С., Еремеева Л. М. Производство биополимеров как один из путей решения проблем экологии и АПК: Аналит. обзор. - Алматы: Издательство: НЦ НТИ, 2009. - 200 с.

    Чугаев Л.А. Дмитрий Иванович Менделеев. Жизнь и деятельность. - Л.: Научное химико-техническое изд-во, 1994. - 57 с.

    Рис. 3 - Полимеры в медицине

    Приложение 4

    Рис. 4 – Искусственные суставы

    Приложение 5

    Рис. 5 - Полимеры в машиностроении

    Приложение 6

    Рис. 6 – Лакокрасочные материалы

    Приложение 7

    Рис. 7 – Укрытие плёнкой грубых кормов

    Приложение 8

    Рис. 8 – Мульчирующая перфорированная плёнка

    Приложение 9

    Рис. 9 – Биоразлагаемые полимеры

    Приложение 10

    Рис. 10 – Разложение биополимерного стаканчика в течении 2-х лет

    Приложение 11

    Рис. 11 – Процесс получения ПЛА полимеризацией лактида

    Ломоносов М. В. – «Слово о пользе химии» //Белявский М. Т. «…Всё испытал и всё проник» - М: Издательство Московского университета, 1990. С. 37.

Выбор редакции
Описание Гречневый пудинг станет для вас настоящим открытием в области десертов. Требует такое лакомство минимального набора...

Существует множество рецептур приготовления домашнего печенья из пшеничной, овсяной, и даже, гречневой муки, но я сегодня хочу вам...

Кальмаров для салата готовят тремя основными способами - отваривают целой тушкой, нарезают полосками и отваривают, добавляют в салат...

Прекрасным легким блюдом, отлично подходящим для праздничного стола, считается салат с кальмарами. Экспериментируя с различными...
Крупы очень полезны для здоровья человека. Пшено — крупа, получаемая путём обдирки от чешуек культурного вида проса. Она богато белком,...
Камни женщины-Близнеца - как выбрать правильный талисман? Чтобы усилить личные положительные стороны и устранить негативные качества,...
Текст: Саша Глювейн Созвездия, под которыми мы родились, могут влиять на наш характер и выбор партнера. сайт представляет цикл статей, в...
Какова Душа, таков и Человек! Слова Создателя. Диктовка от 01.11.04, стих 41 В течение жизни человек может рождать сильные отрицательные...
Александр Беляев Человек-амфибия (повести) Человек-амфибия ЧАСТЬ ПЕРВАЯ «МОРСКОЙ ДЬЯВОЛ» Наступила душная январская ночь аргентинского...