Способы определения координат центра тяжести


вычислению центра тяжести плоской ограниченной фигуры . Многие читатели интуитивно понимают, что такое центр тяжести, но, тем не менее, рекомендую повторить материал одного из уроков аналитической геометрии , где я разобрал задачу о центре тяжести треугольника и в доступной форме расшифровал физический смысл этого термина.

В самостоятельных и контрольных заданиях для решения, как правило, предлагается простейший случай – плоская ограниченная однородная фигура, то есть фигура постоянной физической плотности – стеклянная, деревянная, оловянная чугунные игрушки, тяжёлое детство и т.д. Далее по умолчанию речь пойдёт только о таких фигурах =)

Первое правило и простейший пример : если у плоской фигуры есть центр симметрии , то он является центром тяжести данной фигуры . Например, центр круглой однородной пластины. Логично и по-житейски понятно – масса такой фигуры «справедливо распределена во все стороны» относительно центра. Верти – не хочу.

Однако в суровых реалиях вам вряд ли подкинут сладкую эллиптическую шоколадку , поэтому придётся вооружиться серьёзным кухонным инструментом:

Координаты центра тяжести плоской однородной ограниченной фигуры рассчитываются по следующим формулам :

, или :

, где – площадь области (фигуры); или совсем коротко :

, где

Интеграл будем условно называть «иксовым» интегралом, а интеграл – «игрековым» интегралом.

Примечание-справка : для плоской ограниченной неоднородной фигуры, плотность которой задана функцией , формулы более сложные:
, где – масса фигуры; в случае однородной плотности они упрощаются до вышеприведённых формул.

На формулах, собственно, вся новизна и заканчивается, остальное – это ваше умение решать двойные интегралы , кстати, сейчас предоставляется прекрасная возможность потренироваться и усовершенствовать свою технику. А совершенству, как известно, нет предела =)

Закинемся бодрящей порцией парабол:

Пример 1

Найти координаты центра тяжести однородной плоской фигуры, ограниченной линиями .

Решение : линии здесь элементарны: задаёт ось абсцисс, а уравнение – параболу, которая легко и быстро строится с помощью геометрических преобразований графиков :

парабола , сдвинутая на 2 единицы влево и на 1 единицу вниз.

Я выполню сразу весь чертёж с готовой точкой центра тяжести фигуры:

Правило второе : если у фигуры существует ось симметрии , то центр тяжести данной фигуры обязательно лежит на этой оси .

В нашем случае фигура симметрична относительно прямой , то есть фактически мы уже знаем «иксовую» координату точки «эм».

Также обратите внимание, что по вертикали центр тяжести смещён ближе к оси абсцисс, поскольку там фигура более массивна.

Да, возможно, ещё не все до конца поняли, что такое центр тяжести: пожалуйста, поднимите вверх указательный палец и мысленно поставьте на него заштрихованную «подошву» точкой . Теоретически фигура не должна упасть.

Координаты центра тяжести фигуры найдём по формулам , где .

Порядок обхода области (фигуры) здесь очевиден:

Внимание! Определяемся с наиболее выгодным порядком обхода один раз – и используем его для всех интегралов!

1) Сначала вычислим площадь фигуры. Ввиду относительной простоты интеграла решение можно оформить компактно, главное, не запутаться в вычислениях:

Смотрим на чертёж и прикидываем по клеточкам площадь. Получилось около дела.

2) Иксовая координата центра тяжести уже найдена «графическим методом», поэтому можно сослаться на симметрию и перейти к следующему пункту. Однако так делать всё-таки не советую – велика вероятность, что решение забракуют с формулировкой «используйте формулу».


Заметьте, что здесь можно обойтись исключительно устными вычислениями – иногда совсем не обязательно приводить дроби к общему знаменателю или мучить калькулятор.

Таким образом:
, что и требовалось получить.

3) Найдём ординату центра тяжести. Вычислим «игрековый» интеграл:

А вот тут без калькулятора пришлось бы тяжко. На всякий случай закомментирую, что в результате умножения многочленов получается 9 членов, причём некоторые из них подобны. Подобные слагаемые я привёл устно (как это обычно принято делать в похожих случаях) и сразу записал итоговую сумму .

В результате:
, что очень и очень похоже на правду.

На заключительном этапе отмечаем на чертеже точку . По условию не требовалось ничего чертить, но в большинстве задач мы волей-неволей вынуждены изобразить фигуру. Зато есть безусловный плюс – визуальная и довольно эффективная проверка результата.

Ответ :

Следующие два примера для самостоятельного решения.

Пример 2

Найти координаты центра тяжести однородной плоской фигуры, ограниченной линиями

Кстати, если вы представляете, как расположена парабола и увидели точки, в которых она пересекает ось , то здесь и на самом деле можно обойтись без чертежа.

И посложнее:

Пример 3

Найти центр тяжести однородной плоской фигуры, ограниченной линиями

В случае затруднений с построением графиков, изучите (повторите) урок о параболах и/или Пример №11 статьи Двойные интегралы для чайников .

Примерные образцы решений в конце урока.

Кроме того, десяток-другой похожих примеров можно найти в соответствующем архиве на странице Готовые решения по высшей математике .

Ну а я не могу не порадовать любителей высшей математики, которые часто просят меня разбирать и трудные задачки:

Пример 4

Найти центр тяжести однородной плоской фигуры, ограниченной линиями . Фигуру и её центр тяжести изобразить на чертеже.

Решение : условие данной задачи уже категорично требует выполнения чертежа. А ведь требование не настолько и формально! – эту фигуру способен представить в уме даже человек со средним уровнем подготовки:

Прямая рассекает круг на 2 части, и дополнительная оговорка (см. линейные неравенства ) указывает на то, что речь идёт именно о маленьком заштрихованном кусочке.

Фигура симметрична относительно прямой (изображена пунктиром), поэтому центр тяжести должен лежать на данной линии. И, очевидно, что его координаты равны по модулю . Отличный ориентир, практически исключающий ошибочный ответ!

Теперь плохая новость =) На горизонте маячит малоприятный интеграл от корня, который мы подробно разобрали в Примере №4 урока Эффективные методы решения интегралов . И кто его знает, что там нарисуется ещё. Казалось бы, ввиду наличия окружности выгодно , однако не всё так просто. Уравнение прямой преобразуется к виду и интегралы тоже получатся не сахарные (хотя фанаты тригонометрических интегралов оценят). В этой связи осмотрительнее остановиться на декартовых координатах.

Порядок обхода фигуры:

1) Вычислим площадь фигуры:

Первый интеграл рациональнее взять подведением под знак дифференциала :

А во втором интеграле проведём стандартную замену :


Вычислим новые пределы интегрирования:

2) Найдём .

Здесь во 2-м интеграле опять был использован метод подведения функции под знак дифференциала . Отработайте и возьмите на вооружение эти оптимальные (по моему мнению) приёмы решения типовых интегралов.

После непростых и длительных вычислений вновь обращаем свой взор на чертёж (помним, что точки мы пока не знаем! ) и получаем глубокое моральное удовлетворение от найденного значения .

3) Исходя из проведённого ранее анализа, осталось убедиться, что .

Отлично:

Изобразим точку на чертеже. В соответствии с формулировкой условия запишем её как окончательный ответ :

Похожее задание для самостоятельного решения:

Пример 5

Найти центр тяжести однородной плоской фигуры, ограниченной линиями . Выполнить чертёж.

Эта задача интереса тем, что в ней задана фигура достаточно малых размеров, и если где-нибудь допустить ошибку, то высока вероятность вообще «не попасть» в область. Что, безусловно, хорошо с точки зрения контроля решения.

Примерный образец оформления в конце урока.

Иногда бывает целесообразен переход к полярным координатам в двойных интегралах . Это зависит от фигуры. Искал-искал у себя удачный пример, но не нашёл, поэтому продемонстрирую ход решения на 1-й демо-задаче указанного выше урока:


Напоминаю, что в том примере мы перешли к полярным координатам , выяснили порядок обхода области и вычислили её площадь

Давайте найдём центр тяжести данной фигуры. Схема та же: . Значение просматривается прямо из чертежа, а «иксовая» координата должна быть смещена чуть ближе к оси ординат, поскольку там располагается более массивная часть полукруга.

В интегралах используем стандартные формулы перехода:


Правдоподобно, скорее всего, не ошиблись.

Инструкция

Попробуйте определить центр тяжести плоской фигуры опытным путем. Возьмите новый незаточенный карандаш, поставьте его вертикально. Сверху на него поместите плоскую фигуру. Отметьте на фигуре точку, в которой она устойчиво держится на карандаше. Это и будет центр тяжести вашей фигуры . Вместо карандаша использовать просто вытянутый вверх указательный палец. Но это , ведь надо добиться того, чтобы палец стоял ровно, не раскачивался и не дрожал.

Для демонстрации того, что полученная точка и есть центр масс, проделайте в ней иголкой дырочку. Проденьте в отверстие нитку, на одном из концов завяжите узелок − так, чтобы нитка не выскакивала. Держась за другой конец нитки, подвесьте тело на ней. Если центр тяжести верно, фигура расположится ровно, параллельно полу. Ее бока не будут раскачиваться.

Найдите центр тяжести фигуры геометрическим путем. Если у вас дан треугольник, постройте в нем . Эти отрезки соединяют вершины треугольника с серединой противоположной стороны. Точка станет центром масс треугольника. Чтобы найти срединную точку стороны, можно даже сложить фигуру пополам, но учтите, что при этом нарушится однородность фигуры .

Сравните результаты, полученные геометрическим и опытным путем. Сделайте о ходе эксперимента. Небольшие погрешности считаются нормой. Объясняются они неидеальностью фигуры , неточностью приборов, человеческим фактором (мелкими огрехами в работе, несовершенством человеческого глаза и т.д.).

Источники:

  • Вычисление координат центра тяжести плоской фигуры

Центр фигуры можно найти несколькими способами, смотря какие данные о ней уже известны. Стоит разобрать нахождение центра окружности, которая является совокупностью точек, располагающихся на равном расстоянии от центра, так как эта фигура - одна из наиболее распространенных.

Вам понадобится

  • - угольник;
  • - линейка.

Инструкция

Простейший способ найти центр окружности – согнуть листок бумаги, на котором она начерчена, убедившись, глядя на просвет, что она сложилась точно пополам. Затем согните лист перпендикулярно первому сгибу. Так вы получите диаметры, точка пересечения которых и есть центр фигуры.

Допустим, рассматриваемую фигуру начертили на твердой, несгибаемой поверхности либо это отдельная деталь, которая также не поддается сгибу. Чтобы найти центр окружности в этом случае, вам нужна линейка.

Диаметр является самым длинным отрезком, соединяющим 2 точки окружности. Как известно, проходит он через центр, поэтому задача нахождения центра окружности сводится к нахождению диаметра и его середины.

Наложите линейку на окружность, после чего зафиксируйте в любой точке фигуры нулевую отметку. Приложите линейку к окружности, получив секущую, а затем двигайте по направлению к центру фигуры. Длина секущей будет возрастать, пока не дойдет до пиковой точки. Вы получите диаметр, а найдя его середину, найдете и центр окружности.

Центр описанной окружности для любого треугольника располагается на пересечении срединных перпендикуляров. В случае, если треугольник прямоугольный, ее центр всегда будет совпадать с серединой гипотенузы. То есть решение кроется в построении внутри окружности прямоугольного треугольника с вершинами, лежащими на окружности.

Трафаретом для прямого угла могут послужить школьный или строительный угольник, линейка или даже лист бумаги/картона. Поместите в любую точку окружности вершину прямого угла, сделайте отметки в тех местах, где стороны угла пересекают границу окружности, соедините их. У вас получился диаметр – гипотенуза.

Таким же способом найдите еще один диаметр, место пересечения двух таких отрезков и будет центром окружности.

Видео по теме

Еще в школе на уроках физики мы впервые знакомимся с таким понятием, как центр тяжести. Задача не из легких, но хорошо объяснима и понятна. Не только юному физику понадобится знать определение центра тяжести. И если вы столкнулись с данной задачей, стоит прибегнуть к подсказкам и напоминаниям, дабы обновить свою память.

Инструкция

Проштудировав учебники физики, механики, словари или энциклопедии, вы наткнетесь на центра тяжести или как называют центр масс.

В разных науках немного разные определения, но суть, фактически, не теряется. Центр тяжести всегда находится в центре симметрии тела. Для более наглядного понятия «центр тяжести (или по другому называют центр масс) - это , что неизменно связанна с твердым телом. Через неё проходит равнодействующая сил тяжести, действующие на частицу данного тела при любом его положение».

Если центр тяжести твердого тела - это точка, значит она должна иметь свои координаты.

Для определения важно знать координаты по x, y, z, i-той части тела и вес, обозначающийся буквой - p.

Рассмотрим пример задачи.

Даны два тела различных масс m1 и m2,на которые действуют разные весовые силы (как изображено на рисунке). Записав веса:

P1= m1*g, Р2= m2*g;

Центр тяжести находится между двумя массами. И если все тело подвесить в т.О, наступит значение равновесие, то есть эти перестанут перевешивать друг друга.

Разнообразные геометрические фигуры имеют физические и расчеты по поводу центра тяжести. К каждому свой подход и свой метод.

Рассматривая диск, уточняем, что центр тяжести находится внутри него, точнее диаметров (как показано на рисунке в т.С - точка пересечение диаметров). Таким же способом находят центры параллелепипеда или однородного шара.

Представленный диск и два тела с массами m1 и m2 - однородной массы и правильной формы. Здесь можно отметить, что искомый нами центр тяжести находится внутри этих предметов. Однако, в телах с неоднородной массой и неправильной формы центр может находится за . Чувствуете сами, что задача уже становится сложнее.

Мода на «женщин, которые похожи на мальчиков» уже давно прошла, но многие представительницы слабого пола хотят до сих пор обладать плоской попой. Хотя на сегодняшний день «в моде» демонстрировать всю цветущую сексуальность, гармоничное, красивое и тренированное тело. Ведь именно в таком случае, красивая попка является непременной составляющей не только женской, но также и мужской красоты.

Инструкция

Для того, чтобы попу плоской, необходимо выполнять следующие . 1 упражнение "Поднимание ног".Это упражнение можете в нескольких вариантах.Встаньте на четвереньки - в исходное положение, а затем делайте поочередно подъемы каждой ноги, чтобы бедро было параллельно полу. Зафиксируйте ногу в прижатом положении к и производите пружинящие движения наверх. При этом, обратите внимание на фиксацию вашей ноги в голеностопном, а также коленном суставе, старайтесь данное положение не изменять.

2 упражнение "Поднятие таза".Лягте на , руки расположите параллельно телу, а ноги согните в коленях. После этого приподнимите таз от пола, сильно напрягая ягодицы. При этом верхняя часть и руки от пола не должны отрываться.В таком же положении сделайте пружинистых движений наверх.

3 упражнение "Поднятие ".Встаньте, ноги расположите на ширине плеч. Попеременно поднимайте и опускайте по одному колену как можно выше. При поднятии колена старайтесь как можно дольше удержаться, не двигаясь, на одной ноге.Этим упражнением очень хорошо прорабатывается зона, которая находится чуть выше попы.

4 упражнение "Приседание с отведением таза".Встаньте так, чтобы ноги были шире плеч, а стопы параллельно им. В этом случае левая нога должна быть немного позади правой. Затем присядьте, опираясь на левую ногу и отводя таз назад. При этом руки протяните перед левой стопой, спину держите прямой. После этого встаньте, перенесите весь вес на правую ногу, левую отведите назад и поднимите руки над головой.Данное упражнение повторите 10 раз, затем смените ногу.

5 упражнение "Выпады колесом".Сделайте выпад вперед, начиная с левой ноги, чуть разверните стопу по часовой стрелке. Затем наклонитесь вперед от бедра. При этом широко разведите руки, словно хотите сделать колесо. Задержитесь на несколько секунд в этом положении, затем встаньте, сохранив положение правой ноги. Левой совершите шаг влево и разверните наружу мысок. Присядьте и наклонитесь влево.

Видео по теме

Источники:

  • плоские попы в 2019

В обыденном смысле центр тяжести воспринимают как точку, к которой можно приложить равнодействующую всех сил, действующих на тело. Самый простой пример - это детские качели в виде обычной доски. Без всяких вычислений любой ребенок подберет опору доски так, чтобы уравновесить (а может, и перевесить) на качелях тяжелого мужчину. В случае сложных тел и сечений без точных расчетов и соответствующих формул не обойтись. Даже если получаются громоздкие выражения, главное - не пугаться их, а помнить, что исходно речь идет о практически элементарной задаче.

Инструкция

Рассмотрите простейший рычаг (см. рис 1), находящийся в положении равновесия. Расположите на горизонтальной оси с абсциссой х₁₂ и поместите на краях материальные точки масс m₁ и m₂. Считайте их координаты по оси 0х известными и равными х₁ и х₂. Рычаг находится в положении равновесия, если моменты сил веса Р₁=m₁g и P₂=m₂g равны. Момент равен произведению силы на ее плечо, которое можно найти как длину перпендикуляра опущенного из точки приложения силы на вертикаль х=х₁₂. Поэтому, в соответствии с рисунком 1, m₁gℓ₁= m₂gℓ₂, ℓ₁=х₁₂-х₁, ℓ₂=х₂-х₁₂. Тогда m₁(х₁₂-х₁)=m₂(х₂-х₁₂). Решите это уравнение и получите х₁₂=(m₁x₁+m₂x₂)/(m₁+m₂).

Для выяснения ординаты y₁₂ примените те же самые рассуждения и выкладки, как и на шаге 1. По-прежнему следуйте иллюстрации, приведенной на рисунке 1, где m₁gh₁= m₂gh₂, h₁=y₁₂-y₁, h₂=y₂-y₁₂. Тогда m₁(y₁₂-y₁)=m₂(y₂-y₁₂). Результат - у₁₂=(m₁у₁+m₂у₂)/(m₁+m₂). Далее считайте, что вместо системы из двух точек имеется одна точка М₁₂(x12,у12) общей массы (m₁+m₂).

К системе из двух точек добавьте еще одну массу (m₃) с координатами (х₃, у₃). При вычислении следует по-прежнему считать, что имеете дело с двумя точками, где вторая из них имеет массу (m₁+m₂) и координаты (x12,у12). Повторяя уже для этих двух точек все действия шагов 1 и 2, придете к центра трех точек x₁₂₃=(m₁x₁+m₂x₂+m₃x₃)/(m₁+m₂+m₃), у₁₂₃=(m₁у₁+m₂у₂+m₃y₃)/(m₁+m₂+m₃). Далее добавляйте четвертую, пятую и так далее точки. После многократного повторения все той же процедуры убедитесь, что для системы n точек координаты центра тяжести вычисляются по формуле (см. рис. 2). Отметьте для себя тот факт, что в процессе работы ускорение свободного падения g сокращалось. Поэтому координаты центра масс и тяжести совпадают.

Представьте себе, что в рассматриваемом сечении расположена некоторая область D, поверхностная плотность которой ρ=1. Сверху и снизу фигура ограничена графиками кривых у=φ(х) и у=ψ(х), х є [а,b]. Разбейте область D вертикалями x=x₍i-1₎, x=x₍i₎ (i=1,2,…,n) на тонкие полоски, такие, что их можно приблизительно считать прямоугольниками с основаниями ∆хi (см. рис. 3). При этом середину отрезка ∆хi считайте положите совпадающим с абсциссой центра масс ξi=(1/2). Высоту прямоугольника считайте приблизительно равной [φ(ξi)-ψ(ξi)]. Тогда ордината центра масс элементарной площади ηi=(1/2)[φ(ξi)+ψ(ξi)].

В силу равномерного распределения плотности считайте, что центр масс полоски совпадет с ее геометрическим центром. Соответствующая элементарная масса ∆mi=ρ[φ(ξi)-ψ(ξi)]∆хi=[φ(ξi)-ψ(ξi)]∆хi сосредоточена в точке (ξi,ηi). Наступил момент обратного перехода от массы, представленной в дискретной форме, к непрерывной. В соответствии с формулами вычисления координат (см. рис. 2) центра тяжести образуются интегральные суммы, проиллюстрированные на рисунке 4а. При предельном переходе при ∆xi→0 (ξi→xi) от сумм к определенным интегралам, получите окончательный ответ (рис. 4b). В ответе масса отсутствует. Равенство S=M следует понимать лишь как количественное. Размерности здесь отличны друг от друга.

Центр тяжести - точка, через которую проходит линия действия равнодействующей элементарных сил тяжести. Он обладает свойством центра параллельных сил (Е. М. Никитин , § 42). Поэтому формулы для определения положения центра тяжести различных тел имеют вид:
x c = (∑ G i x i) / ∑ G i ;
(1) y c = (∑ G i y i) / ∑ G i ;
z c = (∑ G i z i) / ∑ G i .

Если тело, центр тяжести которого нужно определить, можно отождествить с фигурой, составленной из линий (например, замкнутый или незамкнутый контур, изготовленный из проволоки, как на рис. 173), то вес G i каждого отрезка l i можно представить в виде произведения
G i = l i d,
где d - постоянный для всей фигуры вес единицы длины материала.

После подстановки в формулы (1) вместо G i их значений l i d постоянный множитель d в каждом слагаемом числителя и знаменателя можно вынести за скобки (за знак суммы) и сократить. Таким образом, формулы для определения координат центра тяжести фигуры, составленной из отрезков линий , примут вид:
x c = (∑ l i x i) / ∑ l i ;
(2) y c = (∑ l i y i) / ∑ l i ;
z c = (∑ l i z i) / ∑ l i .

Если тело имеет вид фигуры, составленной из расположенных различным образом плоскостей или кривых поверхностей (рис. 174), то вес каждой плоскости (поверхности) можно представить так:
G i = F i p,
где F i - площади каждой поверхности, а p - вес единицы площади фигуры.

После подстановки этого значения G i в формулы (1) получаем формулы координат центра тяжести фигуры, составленной из площадей :
x c = (∑ F i x i) / ∑ F i ;
(3) y c = (∑ F i y i) / ∑ F i ;
z c = (∑ F i z i) / ∑ F i .

Если же однородное тело можно разделить на простые части определенной геометрической формы (рис. 175), то вес каждой части
G i = V i γ,
где V i - объем каждой части, а γ - вес единицы объема тела.

После подстановки значений G i в формулы (1) получаем формулы для определения координат центра тяжести тела, составленного из однородных объемов :
x c = (∑ V i x i) / ∑ V i ;
(4) y c = (∑ V i y i) / ∑ V i ;
z c = (∑ V i z i) / ∑ V i .


При решении некоторых задач на определение положения центра тяжести тел иногда необходимо знать, где расположен центр тяжести дуги окружности, кругового сектора или треугольника.

Если известен радиус дуги r и центральный угол 2α, стягиваемый дугой и выраженный в радианах, то положение центра тяжести C (рис. 176, а) относительно центра дуги O определится формулой:
(5) x c = (r sin α)/α.

Если же задана хорда AB=b дуги, то в формуле (5) можно произвести замену
sin α = b/(2r)
и тогда
(5а) x c = b/(2α).

В частном случае для полуокружности обе формулы примут вид (рис. 176, б):
(5б) x c = OC = 2r/π = d/π.

Положение центра тяжести кругового сектора, если задан его радиус r (рис. 176, в), определяется при помощи формулы:
(6) x c = (2r sin α)/(3α).

Если же задана хорда сектора, то:
(6а) x c = b/(3α).

В частном случае для полукруга обе последние формулы примут вид (рис. 176, г)
(6б) x c = OC = 4r/(3π) = 2d/(3π).

Центр тяжести площади любого треугольника расположен от любой стороны на расстоянии, равном одной трети соответствующей высоты.

У прямоугольного треугольника центр тяжести находится на пересечении перпендикуляров, восставленных к катетам из точек, расположенных на расстоянии одной трети длины катетов, считая от вершины прямого угла (рис. 177).

При решении задач на определение положения центра тяжести любого однородного тела, составленного либо из тонких стержней (линий), либо из пластинок (площадей), либо из объемов, целесообразно придерживаться следующего порядка:

1) выполнить рисунок тела, положение центра тяжести которого нужно определить. Так как все размеры тела обычно известны, при этом следует соблюдать масштаб;

2) разбить тело на составные части (отрезки линий или площади, или объемы), положение центров тяжести которых определяется исходя из размеров тела;

3) определить или длины, или площади, или объемы составных частей;

4) выбрать расположение осей координат;

5) определить координаты центров тяжести составных частей;

6) найденные значения длин или площадей, или объемов отдельных частей, а также координат их центров тяжести подставить в соответствующие формулы и вычислить координаты центра тяжести всего тела;

7) по найденным координатам указать на рисунке положение центра тяжести тела.

§ 23. Определение положения центра тяжести тела, составленного из тонких однородных стержней

§ 24. Определение положения центра тяжести фигур, составленных из пластинок

В последней задаче, а также в задачах, приведенных в предыдущем параграфе, расчленение фигур на составные части не вызывает особых затруднений. Но иногда фигура имеет такой вид, который позволяет разделить ее на составные части несколькими способами, например тонкую пластинку прямоугольной формы с треугольным вырезом (рис. 183). При определении положения центра тяжести такой пластинки ее площадь можно разделить на четыре прямоугольника (1, 2, 3 и 4) и один прямоугольный треугольник 5 - несколькими способами. Два варианта показаны на рис. 183, а и б.

Наиболее рациональным является тот способ деления фигуры на составные части, при котором образуется наименьшее их число. Если в фигуре есть вырезы, то их можно также включать в число составных частей фигуры, но площадь вырезанной части считать отрицательной. Поэтому такое деление получило название способа отрицательных площадей.

Пластинка на рис. 183, в делится при помощи этого способа всего на две части: прямоугольник 1 с площадью всей пластинки, как будто она целая, и треугольник 2 с площадью, которую считаем отрицательной.

§ 26. Определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму

Чтобы решать задачи на определение положения центра тяжести тела, составленного из частей, имеющих простую геометрическую форму, необходимо иметь навыки определения координат центра тяжести фигур, составленных из линий или площадей.

Прямоугольник. Так как прямоугольник имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии, т.е. в точке пересечения диагоналей прямоугольника.

Треугольник. Центр тяжести лежит в точке пересечения его медиан. Из геометрии известно, что медианы треугольника пересекаются в одной точке и делятся в отношении 1:2 от основания.

Круг. Так как круг имеет две оси симметрии, то его центр тяжести находится на пересечении осей симметрии.

Полукруг. Полукруг имеет одну ось симметрии, то центр тяжести лежит на этой оси. Другая координата центра тяжести вычисляется по формуле: .

Многие конструктивные элементы изготавливают из стандартного проката – уголков, двутавров, швеллеров и других. Все размеры, а так же геометрические характеристики прокатных профилей это табличные данные, которые можно найти в справочной литературе в таблицах нормального сортамента (ГОСТ 8239-89, ГОСТ 8240-89).

Пример 1. Определить положение центра тяжести фигуры, представленной на рисунке.

Решение:

    Выбираем оси координат, так чтобы ось Ох прошла по крайнему нижнему габаритному размеру, а ось Оу – по крайнему левому габаритному размеру.

    Разбиваем сложную фигуру на минимальное количество простых фигур:

    прямоугольник 20х10;

    треугольник 15х10;

    круг R=3 см.

    Вычисляем площадь каждой простой фигуры, её координаты центра тяжести. Результаты вычислений заносим в таблицу

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

Ответ: С(14,5; 4,5)

Пример 2 . Определить координаты центра тяжести составного сечения, состоящего из листа и прокатных профилей.

Решение.

    Выбираем оси координат, так как показано на рисунке.

    Обозначим фигуры номерами и выпишем из таблицы необходимые данные:

№ фигуры

Площадь фигуры А,

Координаты центра тяжести

    Вычисляем координаты центра тяжести фигуры по формулам:

Ответ: С(0; 10)

Лабораторная работа №1 «Определение центра тяжести составных плоских фигур»

Цель: Определить центр тяжести заданной плоской сложной фигуры опытным и аналитическим способами и сравнить их результаты.

Порядок выполнения работы

    Начертить в тетрадях свою плоскую фигуру по размерам, с указанием осей координат.

    Определить центр тяжести аналитическим способом.

    1. Разбить фигуру на минимальное количество фигур, центры тяжести которых, мы знаем, как определить.

      Указать номера площадей и координаты центра тяжести каждой фигуры.

      Вычислить координаты центра тяжести каждой фигуры.

      Вычислить площадь каждой фигуры.

      Вычислить координаты центра тяжести всей фигуры по формулам (положение центра тяжести нанести на чертеж фигуры):

Установка для опытного определения координат центра тяжести способом подвешивания состоит из вертикальной стойки 1 (см. рис.), к которой прикреплена игла 2 . Плоская фигура 3 изготовлена из картона, в котором легко проколоть отверстие. Отверстия А и В прокалываются в произвольно расположенных точках (лучше на наиболее удаленном расстоянии друг от друга). Плоская фигура подвешивается на иглу сначала в точке А , а потом в точке В . При помощи отвеса 4 , закрепленного на той же игле, на фигуре прочерчивают карандашом вертикальную линию, соответствующую нити отвеса. Центр тяжести С фигуры будет находиться в точке пересечения вертикальных линий, нанесенных при подвешивании фигуры в точках А и В .

Тема относительно проста для усвоения, однако крайне важна при изучении курса сопротивления материалов. Главное внимание здесь необходимо обратить на решение задач как с плоскими и геометрическими фигурами, так и со стандартными прокатными профилями.

Вопросы для самоконтроля

1. Что такое центр параллельных сил?

Центр параллельных сил есть точка, че­рез которую проходит линия равнодействую­щей системы параллельных сил, прило­женных в заданных точках, при любом изменении на­правления этих сил в простран­стве.

2. Как найти координаты центра параллельных сил?

Для определения координат центра параллельных сил воспользуемся теоремой Вариньона.

Относительно оси x

M x (R) = ΣM x (F k) , - y C R = Σy kFk и y C = Σy kFk /Σ Fk .

Относительно оси y

M y (R) = ΣM y (F k) , - x C R = Σx kFk и x C = Σx kFk /Σ Fk .

Чтобы определить координату z C , повернем все силы на 90° так, чтобы они стали параллельны оси y (рисунок 1.5, б). Тогда

M z (R) = ΣM z (F k) , - z C R = Σz kFk и z C = Σz kFk /Σ Fk .

Следовательно, формула для определения радиус-вектора центра параллельных сил принимает вид

r C = Σr kFk /Σ Fk .

3. Что такое центр тяжести тела?

Центр Тяжести- неизменно связанная с твердым телом точка, через которую проходит равнодействующая сил тяжести, действующих на частицы этого тела при любом положении тела в пространстве. У однородного тела, имеющего центр симметрии (круг, шар, куб и т. д.), центр тяжести находится в центре симметрии тела. Положение центра тяжести твердого тела совпадает с положением его центра масс.

4. Как найти центр тяжести прямоугольника, треугольника, круга?

Для нахождения центра тяжести треугольника, необходимо нарисовать треугольник – фигуру, состоящую из трех отрезков, соединенных между собой в трех точках. Перед тем, как найти центр тяжести фигуры, необходимо, используя линейку, измерить длину одной стороны треугольника. В середине стороны поставьте отметку, после чего противоположную вершину и середину отрезка соедините линией, которая называется медианой. Тот же самый алгоритм повторите со второй стороной треугольника, а затем и с третьей. Результатом вашей работы станут три медианы, которые пересекаются в одной точке, которая будет являться центром тяжести треугольника. Если необходимо определить центр тяжести круглого диска однородной структуры, то для начала найдите точку пересечения диаметров круга. Она и будет центром тяжести данного тела. Рассматривая такие фигуры, как шар, обруч и однородный прямоугольный параллелепипед, можно с уверенностью сказать, что центр тяжести обруча будет находиться в центре фигуры, но вне ее точек, центр тяжести шара - геометрический центр сферы, и в последнем случае, центром тяжестью считается пересечение диагоналей прямоугольногопараллелепипеда.

5. Как найти координаты центра тяжести плоского составного сечения?

Метод разбиения: если плоскую фигуру можно разбить на конечное число таких частей, для каждой из которых положение центра тяжести известно, то координаты центра тяжести всей фигуры опредляются по формулам:

Х C = ( s k x k) / S; Y C = ( s k y k) / S,

где x k , y k - координаты центров тяжести частей фигуры;

s k - их площади;

S = s k - площадь всей фигуры.

6. Центр тяжести

1. В каком случае для определения центра тяжести достаточно определить одну координату расчетным путем?

В первом случае для определения центра тяжести достаточно определить одну координату Тело разбивается на конечное число частей, для каждой из которых положение центра тяжести C и площадь S известны. Например, проекцию тела на плоскость xOy (рисунок 1.) можно представить в виде двух плоских фигур с площадями S 1 и S 2 (S = S 1 + S 2 ). Центры тяжести этих фигур находятся в точках C 1 (x 1 , y 1) и C 2 (x 2 , y 2) . Тогда координаты центра тяжести тела равны

Так как центры фигур лежат на оси ординат (х = 0), то находим только координату Ус .

2 Как учитывается площадь отверстия в фигуре 4 в формуле для определения центра тяжести фигуры?

Метод отрицательных масс

Этот метод заключается в том, что тело, имеющее свободные полости, считают сплошным, а массу свободных полостей – отрицательной. Вид формул для определения координат центра тяжести тела при этом не меняется.

Таким образом, при определении центра тяжести тела, имеющего свободные полости, следует применять метод разбиения, но считать массу полостей отрицательной.

иметь представление о центре параллельных сил и его свойствах;

знать формулы для определения координат центра тяжести плоских фигур;

уметь определять координаты центра тяжести плоских фигур простых геометрических фигур и стандартных прокатных профилей.

ЭЛЕМЕНТЫ КИНЕМАТИКИ И ДИНАМИКИ
Изучив кинематику точки, обратите внимание на то, что прямолинейное движе­ние точки как неравномерное, так и равномерное всегда характеризуется наличием нормального (центростремительного) ускорения. При поступательном движении тела (характеризуемом движением любой его точки) применимы все формулы кинемати­ки точки. Формулы для определения угловых величин тела, вращающегося вокруг неподвижной оси, имеют полную смысловую аналогию с формулами для определе­ния соответствующих линейных величин поступательно движущегося тела.

Тема 1.7. Кинематика точки
При изучении темы обратите внимание на основные понятия кинематики: ускорение, скорость, путь, расстояние.

Вопросы для самоконтроля

1. В чем заключается относительность понятий покоя и движения?

Механическое движение -это изменение движения тела, или (его частей) в пространстве относительно др. тел с течением времени. Полет брошенного камня, вращение колеса- примеры механического движения.

2. Дайте определение основных понятий кинематики: траектории, расстоянию, пути, скорости, ускорению, времени.

Скорость – это кинематическая мера движения точки, характеризующая быстроту изменения ее положения в пространстве. Скорость является векторной величиной, т. е. она характеризуется не только модулем (скалярной составляющей), но и направлением в пространстве.

Как известно из физики, при равномерном движении скорость может быть определена длиной пути, пройденного за единицу времени: v = s/t = const (предполагается, что начало отсчета пути и времени совпадают). При прямолинейном движении скорость постоянна и по модулю, и по направлению, а ее вектор совпадает с траекторией.

Единица скорости в системе СИ определяется соотношением длина/время, т. е. м/с.

Ускорение есть кинематическая мера изменения скорости точки во времени. Другими словами - ускорение - это скорость изменения скорости.
Как и скорость, ускорение является величиной векторной, т. е. характеризуется не только модулем, но и направлением в пространстве.

При прямолинейном движении вектор скорости всегда совпадает с траекторией и поэтому вектор изменения скорости тоже совпадает с траекторией.

Из курса физики известно, что ускорение представляет собой изменение скорости в единицу времени. Если за небольшой промежуток времени Δt скорость точки изменилась на Δv, то среднее ускорение за данный промежуток времени составило: а ср = Δv/Δt.

Среднее ускорение не дает представление об истинной величине изменения скорости в каждый момент времени. При этом очевидно, что чем меньше рассматриваемый промежуток времени, во время которого произошло изменение скорости, тем ближе значение ускорения будет к истинному (мгновенному).
Отсюда определение: истинное (мгновенное) ускорение есть предел, к которому стремится среднее ускорение при Δt, стремящемся к нулю:

а = lim а ср при t→0 или lim Δv/Δt = dv/dt.

Учитывая, что v = ds/dt, получим: а = dv/dt = d 2 s/dt 2 .

Истинное ускорение в прямолинейном движении равно первой производной скорости или второй производной координаты (расстояния от начала отсчета перемещения) по времени. Единица ускорения - метр, деленный на секунду в квадрате (м/с 2).

Траектория - линия в пространстве, вдоль которой движется материальная точка.
Путь - это длина траектории. Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени:

3. Какими способами может быть задан закон движения точки?

1.Естественный способ задания движения точки.

При естественном способе задания движения предполагается определение параметров движения точки в подвижной системе отсчета, начало которой совпадает с движущейся точкой, а осями служат касательная, нормаль и бинормаль к траектории движения точки в каждом ее положении. Чтобы задать закон движения точки естественным способом необходимо:

1) знать траекторию движения;

2) установить начало отсчета на этой кривой;

3) установить положительное направление движения;

4) дать закон движения точки по этой кривой, т.е. выразить расстояние от начала отсчета до положения точки на кривой в данный момент времени ∪OM=S(t) .

2.Векторный способ задания движения точки

В этом случае положение точки на плоскости или в пространстве определяется вектором-функцией. Этот вектор откладывается от неподвижной точки, выбранной за начало отсчета, его конец определяет положение движущейся точки.

3.Координатный способ задания движения точки

В выбранной системе координат задаются координаты движущейся точки как функции от времени. В прямоугольной декартовой системе координат это будут уравнения:

4. Как направлен вектор истинной скорости точки при криволинейном движе­нии?

При неравномерном движении точки модуль ее скорости с течением времени меняется.
Представим себе точку, движение которой задано естественным способом уравнением s = f(t).

Если за небольшой промежуток времени Δt точка прошла путь Δs, то ее средняя скорость равна:

vср = Δs/Δt.

Средняя скорость не дает представления об истинной скорости в каждый данный момент времени (истинную скорость иначе называют мгновенной). Очевидно, что чем меньше промежуток времени, за который определяется средняя скорость, тем ближе ее значение будет к мгновенной скорости.

Истинная (мгновенная) скорость есть предел, к которому стремится средняя скорость при Δt, стремящемся к нулю:

v = lim v ср при t→0 или v = lim (Δs/Δt) = ds/dt.

Таким образом, числовое значение истинной скорости равно v = ds/dt.
Истинная (мгновенная) скорость при любом движении точки равна первой производной координаты (т. е. расстояния от начала отсчета перемещения) по времени.

При Δt стремящемся к нулю, Δs тоже стремится к нулю, и, как мы уже выяснили, вектор скорости будет направлен по касательной (т. е. совпадает с вектором истинной скорости v). Из этого следует, что предел вектора условной скорости v п, равный пределу отношения вектора перемещения точки к бесконечно малому промежутку времени, равен вектору истинной скорости точки.

5. Как направлены касательное и нормальное ускорения точки?

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости.

6. Какое движение совершает точка, если касательное ускорение равно нулю, а нормальное не изменяется с течением времени?

Равномерное криволинейное движение характеризуется тем, что численное значение скорости постоянно (v = const ), скорость меняется лишь по направлению. В этом случае касательное ускорение равно нулю, так как v = const (рис.б),

а нормальное ускорение не равно нулю, так как r - конечная величина.

7. Как выглядят кинематические графики при равномерном и равнопеременном движении?

При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x . Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX . Поэтому перемещение и скорость при прямолинейном движении можно спроецировать на ось OX и рассматривать их проекции как алгебраические величины.

При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.


В результате изучения темы студент должен:

иметь представление о пространстве, времени, траектории; средней и истиной скорости;

знать способы задания движения точки; параметры движения точки по заданной траектории.

Выбор редакции
Лучшие лунные дни для смены места работы 10 лунный день: отлично Ближайший начнётся 20.08.2018 в 16:09. Десятый день лунных суток —...

Иметь частный бизнес – очень рискованное дело, ведь при его открытии никто точно не знает, будет он успешным или прогорит. Поэтому его...

Кадровая служба предприятия: делопроизводство, документооборот и нормативная база Гусятникова Дарья Ефимовна 2.5. Табель учета...

Табель учета определен постановлением Госкомстата №1 от 05.01.2004 (табель учета является обязательным для заполнения, но законом не...
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...
Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...
Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...
Лепить во сне пельмени означает наступление нужды, ухудшение самочувствия и погибшие надежды. Покупать пельмени в магазине – наяву...
Ну кто же не любит спелую сладкую черешню? Она является одним из самых долгожданных лакомств в летний сезон практически для каждого...