Условия применения закона сохранения импульса. Школьная энциклопедия


Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

В результате взаимодействия тел их координаты и скорости могут непрерывно изменяться. Могут изменяться и силы, действующие между телами. К счастью, наряду с изменчивостью окружающего нас мира существует и неизменный фон, обусловленный так называемыми законами сохранения, утверждающими постоянство во времени некоторых физических величин, характеризующих систему взаимодействующих тел как целое.

Пусть на тело массой m в течение времени t действует какая-то постоянная сила . Выясним, как произведение этой силы на время её действиясвязано с изменением состояния этого тела.

Закон сохранения импульса обязан своим существованием такому фундаментальному свойству симметрии, как однородность пространства .

Из второго закона Ньютона (2.8) мы видим, что временная характеристика действия силы связана с изменением импульса Fdt=dP

Импульсом тела P называют произведение массы тела на скорость его движения:

(2.14)

Единица импульса - килограмм-метр в секунду (кг м/с).

Направлен импульс всегда в туже сторону, что и скорость.

В современной формулировки закон сохранения импульса гласит : при любых процессах, происходящих в замкнутой системе, её полный импульс остаётся неизменным.

Докажем справедливость этого закона. Рассмотрим движение двух материальных точек, взаимодействующих только между собой (рис. 2.4).

Такую систему можно назвать изолированной в том смысле, что нет взаимодействия с другими телами. По третьему закону Ньютона, силы, действующие на эти тела, равны по величине и противоположны по направлению:

Используя второй закон Ньютона, это можно выразить как:


Объединяя эти выражения, получим

Перепишем данное соотношение, используя понятие импульса:

Следовательно,

Если изменение какой-либо величины равно нулю, то эта физическая величина сохраняется. Таким образом, приходим к выводу: сумма импульсов двух взаимодействующих изолированных точек остается постоянной, независимо от вида взаимодействия между ними.

(2.15)

Этот вывод можно обобщить на произвольную изолированную систему материальных точек, взаимодействующих между собой.   Если система не замкнута, т.е. сумма внешних сил, действующих на систему, не равна нулю: F ≠ 0 , закон сохранения импульса не выполняется.

Центром масс (центром инерции) системы называют точку, координаты которой заданы уравнениями:

(2.16)

где х 1 ; у 1 ; z 1 ; х 2 ; у 2 ; z 2 ; …; х N ; у N ; z N - координаты соответствующих материальных точек системы.

§2.5 Энергия. Механическая работа и мощность

Количественной мерой различных видов движения является энергия. При превращении одной формы движения в другую происходит изменение энергии. Точно также при передаче движения от одного тела к другому происходит уменьшение энергии одного тела и увеличение энергии другого тела. Такие переходы и превращения движения и, следовательно, энергии могут происходить либо в процессе работы, т.е. тогда, когда осуществляется перемещение тела при воздействии силы, либо в процессе теплообмена.

Для определения работы силы F рассмотрим криволинейную траекторию (рис. 2.5), по которой движется материальная точка из положения 1 в положение 2. Разобьем траекторию на элементарные, достаточно малые перемещения dr; этот вектор совпадает с направлением движения материаль ной точки. Модуль элементарного перемещения обозначим dS: |dr| = dS. Так как элементарное перемещение достаточно мало, то в этом случае силу F можно рассматривать неизменной и элементарную работу вычислять по формуле работы постоянной силы:

dA = F соsα dS = F соsα|dr|, (2.17)

или как скалярное произведение векторов:

(2.18)

Элементарная работа или просто работа силы, есть скалярное произведение векторов силы и элементарного перемещения.

Суммируя все элементарные работы, можно определить работу переменной силы на участке траектории от точки 1 до точки 2 (см. рис. 2.5). Эта задача сводится к нахождению следующего интеграла:

(2.19)

Пусть эта зависимость представлена графически (рис.2.6), тогда искомая работа определяется на графике площадью заштрихованной фигуры.

Заметим, что в отличие от второго закона Ньютона в выражениях (2.22) и (2.23) под F совсем не обязательно понимать равнодействующую всех сил, это может быть одна сила или равнодействующая нескольких сил.

Работа может быть положительной или отрицательной. Знак элементарной работы зависит от значения соsα. Так, например, из рисунка 2.7 видно, что при перемещении по горизонтальной поверхности тела, на которое действуют силы F, F тр и mg, работа силы F положительна (α > 0), работа силы трения F тр отрицательна (α = 180°), а работа силы тяжести mg равна нулю (α = 90°). Так как тангенциальная составляющая силы F t = F соs α, то элементарная работа вычисляется как произведение F t на модуль элементарного перемещения dS:

dA = F t dS (2.20)

Таким образом, работу совершает лишь тангенциальная составляющая силы, нор­мальная составляющая силы (α = 90°) работы не совершает.

Быстроту совершения работы характеризуют величиной, называемой мощностью.

Мощностью называется скалярная физическая величина, равная отношению работы ко времени, за которое она совер шается:

(2.21)

Учитывая (2.22), получаем

(2.22)

или N = Fυcosα (2.23) Мощность равна скалярному произведению векторов силы и скорости.

Из полученной формулы видно, что при постоянной мощности двигателя сила тяги больше тогда, когда скорость движения меньше
. Именно поэтому водитель автомобиля при подъёме в гору, когда нужна наибольшая сила тяги, переключает двигатель на малую скорость.

Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 53615

В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии .

Импульс тела

Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения .

С латинского «импульс» переводится как «толкать, двигать».

Любое тело, которое движется, обладает импульсом.

Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

Если - импульс одной материальной точки, то импульс системы материальных точек

То есть, импульс системы материальных точек – это векторная сумма импульсов всех материальных точек, входящих в систему. Она равна произведению масс этих точек на их скорости.

Единица измерения импульса в международной системе единиц СИ – килограмм-метр в секунду (кг · м/сек).

Импульс силы

В механике существует тесная связь между импульсом тела и силой. Эти две величины связывает величина, которая называется импульсом силы .

Если на тело действует постоянная сила F в течение промежутка времени t , то согласно второму закону Ньютона

Эта формула показывает связь между силой, которая действует на тело, временем действия этой силы и изменением скорости тела.

Величина, равная произведению силы, действующей на тело, на время, в течение которого она действует, называется импульсом силы .

Как мы видим из уравнения, импульс силы равен разности импульсов тела в начальный и конечный момент времени, или изменению импульса за какое-то время.

Второй закон Ньютона в импульсной форме формулируется следующим образом: изменение импульса тела равно импульсу действующей на него силы. Нужно сказать, что сам Ньютон именно так и сформулировал первоначально свой закон.

Импульс силы – это также векторная величина.

Закон сохранения импульса вытекает из третьего закона Ньютона.

Нужно помнить, что этот закон действует только в замкнутой, или изолированной, физической системе. А замкнутой называют такую систему, в которой тела взаимодействуют только между собой и не взаимодействуют с внешними телами.

Представим замкнутую систему из двух физических тел. Силы взаимодействия тел друг с другом называют внутренними силами.

Импульс силы для первого тела равен

Согласно третьему закону Ньютона силы, которые действуют на тела при их взаимодействии, равны по величине и противоположны по направлению.

Следовательно, для второго тела импульс силы равен

Путём простых вычислений получаем математическое выражение закона сохранения импульса:

где m 1 и m 2 – массы тел,

v 1 и v 2 – скорости первого и второго тел до взаимодействия,

v 1 " и v 2 " скорости первого и второго тел после взаимодействия.

p 1 = m 1 · v 1 - импульс первого тела до взаимодействия;

p 2 = m 2 · v 2 - импульс второго тела до взаимодействия;

p 1 "= m 1 · v 1 " - импульс первого тела после взаимодействия;

p 2 "= m 2 · v 2 " - импульс второго тела после взаимодействия;

То есть

p 1 + p 2 = p 1 " + p 2 "

В замкнутой системе тела только обмениваются импульсами. А векторная сумма импульсов этих тел до их взаимодействия равна векторной сумме их импульсов после взаимодействия.

Так, в результате выстрела из ружья импульс самого ружья и импульс пули изменятся. Но сумма импульсов ружья и находящейся в нём пули до выстрела останется равной сумме импульсов ружья и летящей пули после выстрела.

При стрельбе из пушки возникает отдача. Снаряд летит вперёд, а само орудие откатывается назад. Снаряд и пушка – замкнутая система, в которой действует закон сохранения импульса.

Импульс каждого из тел в замкнутой системе может изменяться в результате их взаимодействия друг с другом. Но векторная сумма импульсов тел, входящих в замкнутую систему, не изменяется при взаимодействии этих тел с течением времени, то есть остаётся постоянной величиной. Это и есть закон сохранения импульса .

Более точно закон сохранения импульса формулируется следующим образом: векторная сумма импульсов всех тел замкнутой системы – величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Нужно сказать, что в природе замкнутых систем не существует. Но, если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю, (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Закон сохранения импульса называют также законом сохранения количества движения .

Самый яркий пример применения закона сохранения импульса – реактивное движение.

Реактивное движение

Реактивным движением называют движение тела, которое возникает при отделении от него с определённой скоростью какой-то его части. Само тело получает при этом противоположно направленный импульс.

Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.

Пример реактивного движения в природе – выброс жидкости из плода бешеного огурца, когда он лопается. При этом сам огурец летит в противоположную сторону.

Медузы, каракатицы и другие обитатели морских глубин передвигаются, вбирая воду, а затем выбрасывая её.

На законе сохранения импульса основана реактивная тяга. Мы знаем, что при движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается струя жидкости или газа (реактивная струя ). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила . Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.

Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.

До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.

где - масса ракеты

Скорость истечени газа

Изменение скорости ракеты

∆ m f - расход массы топлива

Предположим, ракета работала в течение времени t .

Разделив обе части уравнения на t , получим выражение

По второму закону Ньютона реактивная сила равна

Реактивная сила, или реактивная тяга, обеспечивает движение реактивного двигателя и объекта, связанного с ним, в сторону, противоположную направлению реактивной струи.

Реактивные двигатели применяются в современных самолётах и различных ракетах, военных, космических и др.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса - один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.

Тема: Законы взаимодействия и движения тел

Урок 24. Импульс. Закон сохранения импульса

Ерюткин Евгений Сергеевич

Урок посвящен теме «Импульс и «закон сохранения импульса». Чтобы запускать спутники, нужно строить ракеты. Чтобы ракеты двигались, летали, мы должны совершенно точно соблюдать законы, по которым эти тела будут двигаться. Самым главным законом в этом смысле является закон сохранения импульса. Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

называют произведение массы тела на его скорость: . Импульс - векторная величина, направлен он всегда в ту сторону, в которую направлена скорость. Само слово «импульс» латинское и переводится на русский язык как «толкать», «двигать». Импульс обозначается маленькой буквой , а единицей измерения импульса является .

Первым человеком, который использовал понятие импульс, был . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости - вещь достаточно простая. Именно поэтому часто говорят, что импульс - это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Рис. 1. Рене Декарт

Эти величины - импульс и силу - связывает между собой понятие . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы . Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Теперь перейдем к следующему важному вопросу - закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел: .

Эту же формулу мы можем записать следующим образом: .

Рис. 2. Суммарный импульс системы из двух шариков сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Вывод второго закона Ньютона

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела можно получить второй и третий законы Ньютона. Импульс силы равен изменению импульса тела: . Затем массу выносим за скобки, в скобках остается . Перенесем время из левой части уравнения в правую и запишем уравнение следующим образом: .

Вспомните, что ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло. Если теперь вместо выражения подставить символ ускорения , то мы получаем выражение: - второй закон Ньютона.

Вывод третьего закона Ньютона

Запишем закон сохранения импульса: . Перенесем все величины, связанные с m 1 , в левую часть уравнения, а с m 2 - в правую часть: .

Вынесем массу за скобки: . Взаимодействие тел происходило не мгновенно, а за определенный промежуток. И этот промежуток времени для первого и для второго тел в замкнутой системе был величиной одинаковой: .

Разделив правую и левую часть на время t, мы получаем отношение изменения скорости ко времени - это будет ускорение первого и второго тела соответственно. Исходя из этого, перепишем уравнение следующим образом: . Это и есть хорошо известный нам третий закон Ньютона: . Два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Список дополнительной литературы:

А так ли хорошо знакомо вам количество движения? // Квант. — 1991. — №6. — С. 40-41. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. школы. — М.: Просвещение, 1990. — С. 110-118 Кикоин А.К. Импульс и кинетическая энергия // Квант. — 1985. — № 5. — С. 28-29. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - C. 284-307.

Выбор редакции
Что такое объяснительная записка? Как правильно написать объяснительную записку начальнику на работе за отсутствие на рабочем месте или...

Общее налоговое правило по подоходному налогу гласит, что НДФЛ попадают в государственную казну автоматически. Это значит, что за...

Фото: Денис Медведев / PhotoXPress.RUВесело грызть гранит науки! Было бы на что. С 1 января 2011 г. у нас опять начнётся новая жизнь....

Между подлежащим (группой подлежащего) и сказуемым (группой сказуемого) из всех знаков препинания употребляется только тире. ставится на...
В русском языке существуют особенные части речи, примыкающие к существительному или глаголу. Некоторые языковеды считают их особыми...
Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны?Ъ и ЬТвердый и...
Задумывались ли вы о том, что в русском алфавите есть буквы, которых вполне можно было бы обойтись? Зачем же они нужны? Ъ и Ь Твердый и...
Наршараб – это кисло-сладкий гранатовый соус – один из знаменитых ингредиентов кавказской кулинарии. Он легко станет любимым продуктом и...
Пикантную закуску можно приготовить для праздника или встречи гостей. Приготовление: Отрежьте ножки от шляпок, посолите их и обжарьте на...