Разложение в комплексный ряд фурье теория. Ряды Фурье. Примеры решений


Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем


Разложение в ряд Фурье четных и нечетных функций Функция f(x), определенная на отрезке \-1, где I > 0, называется четной, если График четной функции симметричен относительно оси ординат. Функция f(x), определенная на отрезке J), где I > 0, называется нечетной, если График нечетной функции симметричен относительно начала координат. Пример. а) Функция является четной на отрезке |-jt, jt), так как для всех х е б) Функция является нечетной, так как Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем в) Функция f(x)=x2-x, где не принадлежит ни к четным, ни к нечетным функциям, так как Пусть функция f(x), удовлетворяющая условиям теоремы 1, является четной на отрезке х|. Тогда для всех т.е. /(ж) cos nx является четной функцией, a f(x)sinnx - нечетной. Поэтому коэффициенты Фурье четной функции /(ж) будут равны Следовательно, ряд Фурье четной функции имеет вид 00 Если f(x) - нечетная функция на отрезке [-тг, ir|, то произведение f(x)cosnx будет нечетной функцией, а произведение f(x) sin пх - четной функцией. Поэтому будем иметь Таким образом, ряд Фурье нечетной функции имеет вид Пример 1. Разложить в ряд Фурье на отрезке -х ^ х ^ п функцию 4 Так как эта функция четная и удовлетворяет условиям теоремы 1, то ее ряд Фурье имеет вид Находим коэффициенты Фурье. Имеем Применяя дважды интегрирование по частям, получим, что Значит, ряд Фурье данной функции выглядит так: или, в развернутом виде, Это равенство справедливо для любого х € , так как в точках х = ±ir сумма ряда совпадает со значениями функции f(x) = х2, поскольку Графики функции f(x) = х и суммы полученного ряда даны на рис. Замечание. Этот ряд Фурье позволяет найти сумму одного из сходящихся числовых рядов, а именно, при х = 0 получаем, что Пример 2. Разложить в ряд Фурье на интервале функцию /(х) = х. Функция /(х) удовлетворяет условиям теоремы 1, следовательно ее можно разложить в ряд Фурье, который в силу нечетности этой функции будет иметь вид Интегрируя по частям, находим коэффициенты Фурье Следовательно, ряд Фурье данной функции имеет вид Это равенство имеет место для всех х В точках х - ±тг сумма ряда Фурье не совпадает со значениями функции /(х) = х, так как она равна Вне отрезка [-*, я-] сумма ряда является периодическим продолжением функции /(х) = х; ее график изображен на рис. 6. § 6. Разложение функции, заданной на отрезке, в ряд по синусам или по косинусам Пусть ограниченная кусочно-монотонная функция / задана на отрезке . Значения этой функции на отрезке 0| можно доопределить различным образом. Например, можно определить функцию / на отрезке тс] так, чтобы /. В этом случае говорят, что) «продолжена на отрезок 0] четным образом»; ее ряд Фурье будет содержать только косинусы. Если же функцию /(ж) определить на отрезке [-л-, тс] так, чтобы /(, то получится нечетная функция, и тогда говорят, что / «продолжена на отрезок [-*, 0] нечетным образом»; в этом случае се ряд Фурье будет содержать только синусы. Итак, каждую ограниченную кусочно-монотонную функцию /(ж), определенную на отрезке , можно разложить в ряд Фурье и по синусам, и по косинусам. Пример 1. Функцию разложить в ряд Фурье: а) по косинусам; б) по синусам. М Данная функция при ее четном и нечетном продолжениях в отрезок |-х,0) будет ограниченной и кусочно-монотонной. а) Продолжим /(z) в отрезок 0) а) Продолжим j\x) в отрезок (-тг,0| четным образом (рис. 7), тогда ее ряд Фурье i будет иметь вид П=1 где коэффициенты Фурье равны соответственно для Следовательно, б) Продолжим /(z) в отрезок [-x,0] нечетным образом (рис. 8). Тогда ее ряд Фурье §7. Ряд Фурье для функции с произвольным периодом Пусть функция fix) является периодической с периодом 21,1 ^ 0. Для разложения ее в ряд Фурье на отрезке где I > 0, сделаем замену переменной, положив х = jt. Тогда функция F(t) = / ^tj будет периодической функцией аргумента t с периодом и ее можно разложить на отрезке в ряд Фурье Возвращаясь к переменной ж, т. е. положив, получим Все теоремы, справедливые для рядов Фурье периодических функций с периодом 2тг, остаются в силе и для периодических функций с произвольным периодом 21. В частности, сохраняет свою силу и достаточный признак разложимости функции в ряд Фурье. Пример 1. Разложить в ряд Фурье периодическую функцию с периодом 21, заданную на отрезке [-/,/] формулой (рис.9). Так как данная функция четная, то ее ряд Фурье имеет вид Подставляя в ряд Фурье найденные значения коэффициентов Фурье, получим Отметим одно важное свойство периодических функций. Теорема 5. Если функция имеет период Т и интегрируема, то для любого числа а выполняется равенство m. е. интеграл no отрезку, длина которого равна периоду Т, имеет одно и то же значение независимо от положения этого отрезка на числовой оси. В самом деле, Делаем замену переменной во втором интеграле, полагая. Это дает и следовательно, Геометрически это свойство означает, что в случае площади заштрихованных на рис. 10 областей равны между собой. В частности, для функции f(x) с периодом получим при Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем Пример 2. Функция x является периодической с периодом В силу нечетности данной функции без вычисления интегралов можно утверждать, что при любом Доказанное свойство, в частности, показывает, что коэффициенты Фурье периодической функции f(x) с периодом 21 можно вычислять по формулам где а - произвольное действительное число (отметим, что функции cos - и sin имеют период 2/). Пример 3. Разложить в ряд Фурье заданную на интервале функцию с периодом 2х (рис. 11). 4 Найдем коэффициенты Фурье данной функции. Положив в формулах найдем, что для Следовательно, ряд Фурье будет выглядеть так: В точке х = jt (точка разрыва первого рода) имеем §8. Комплексная запись ряда Фурье В этом параграфе используются некоторые элементы комплексного анализа (см. главу XXX, где все, производимые здесь действия с комплексными выражениями, строго обоснованы). Пусть функция f(x) удовлетворяет достаточным условиям разложимости в ряд Фурье. Тогда на отрезке ж] ее можно представить рядом вида Используя формулы Эйлера Подставляя эти выражения в ряд (1) вместо cos пх и sin пху будем иметь Введем следующие обозначения Тогда ряд (2) примет вид Таким образом, ряд Фурье (1) представлен в комплексной форме (3). Найдем выражения коэффициентов через интегралы. Имеем Аналогично находим Окончательно формулы для с„, с_п и со можно записать так: . . Коэффициенты с„ называются комплексными коэффициентами Фурье функции Для периодической функции с периодом) комплексная форма ряда Фурье примет вид где коэффициенты Сп вычисляются по формулам Сходимость рядов (3) и (4) понимается так: ряды (3) и (4) называются сходящимися для данного значения ж, если существуют пределы Пример. Разложить в комплексный ряд Фурье функцию периода Данная функция удовлетворяет достаточным условиям разложимости в ряд Фурье. Пусть Найдем комплексные коэффициенты Фурье этой функции. Имеем для нечетных для четных n, или,короче. Подставляя значения), окончательно получим Заметим, что этот ряд можно записать и так: Ряды Фурье по общим ортогональным системам функций 9.1. Ортогональные системы функций Обозначим через множество всех (действительных) функций, определенных и интегрируемых на отрезке [а, 6] с квадратом, т. е. таких, для которых существует интеграл В частности, все функции f(x), непрерывные на отрезке [а, 6], принадлежат 6], и значения их интегралов Лебега совпадают со значениями интегралов Римана. Определение. Система функций, где, называется ортогональной на отрезке [а, Ь\, если Условие (1) предполагает, в частности, что ни одна из функций не равна тождественно нулю. Интеграл понимается в смысле Лебега. и назовем величину нормой функции Если в ортогональной системе для всякого п имеем, то система функций называется ортонормированной. Если система {у>„(ж)} ортогональна, то система Пример 1. Тригонометрическая система ортогональна на отрезке. Система функций является ортонормированной системой функций на, Пример 2. Косинус-система и синус-система ортонормирована. Введем обозначение являются ортогональными на отрезке (0, f|, но не ортонормированными (при I Ф- 2). так как их нормы COS Пример 3. Многочлены, определяемые равенством, называются многочленами (полиномами) Лежандра. При п = 0 имеем Можно доказать, что функции образуют ортонормированную систему функций на отрезке. Покажем, например, ортогональность полиномов Лежандра. Пусть т > п. В этом случае, интегрируя п раз по частям, находим поскольку для функции t/m = (z2 - I)m все производные до порядка m - I включительно обращаются в нуль на концах отрезка [-1,1). Определение. Система функций {pn(x)} называется ортогональной на интервале (а, Ь) свесом р(х), если: 1) для всех п = 1,2,... существуют интегралы Здесь предполагается, что весовая функция р(х) определена и положительна всюду на интервале (а, Ь) за возможным исключением конечного числа точек, где р(х) может обращаться в нуль. Выполнив дифференцирование в формуле (3), находим. Можно показать, что многочлены Чебышева-Эрмита ортогональны на интервале Пример 4. Система функций Бесселя {jL(pix)^ ортогональна на интервале нули функции Бесселя Пример 5. Рассмотрим многочлены Чебышева-Эрмита, которые могут быть определены при помощи равенства. Ряд Фурье по ортогональной системе Пусть ортогональная система функций в интервале (a, 6) и пусть ряд (cj = const) сходится на этом интервале к функции f(x): Умножая обе части последнего равенства на - фиксировано) и интегрируя по ж от а до 6, в силу ортогональности системы получим, что Эта операция имеет, вообще говоря, чисто формальный характер. Тем не менее, в некоторых случаях, например, когда ряд (4) сходится равномерно, все функции непрерывны и интервал (a, 6) конечен, эта операция законна. Но для нас сейчас важна именно формальная трактовка. Итак, пусть задана функция. Образуем числа с* по формуле (5) и напишем Ряд, стоящий в правой части, называется рядом Фурье функции f(x) относительно системы {^п(я)}- Числа Сп называются коэффициентами Фурье функции f(x) по этой системе. Знак ~ в формуле (6) означает лишь, что числа Сп связаны с функцией /(ж) формулой (5) (при этом не предполагается, что ряд справа вообще сходится, а тем более сходится к функции f(x)). Поэтому естественно возникает вопрос: каковы свойства этого ряда? В каком смысле он «представляет» функцию f(x)? 9.3. Сходимость в среднем Определение. Последовательность, сходится к элементу ] в среднем, если норма в пространстве Теорема 6. Если последовательность } сходится равномерно, то она сходится и в среднем. М Пусть последовательность {)} сходится равномерно на отрезке [а, Ь] к функции /(х). Это означает, что для всякого при всех достаточно больших п имеем Следовательно, откуда вытекает наше утверждение. Обратное утверждение неверно: последовательность {} может сходиться в среднем к /(х), но не быть равномерно сходящейся. Пример. Рассмотрим последовательность пх Легко видеть, что Но эта сходимость не равномерна: существует е, например, такое, что сколь бы большим ни было л, на отрезке , Разложение в ряд Фурье четных и нечетных функций разложение функции заданной на отрезке в ряд по синусам или по косинусам Ряд Фурье для функции с произвольным периодом Комплексная запись ряда Фурье Ряды Фурье по общим ортогональным системам функций Ряд Фурье по ортогональной системе Минимальное свойство коэффициентов Фурье Неравенство Бесселя Равенство Парсеваля Замкнутые системы Полнота и замкнутость систем и пусть Обозначим через с* коэффициенты Фурье функции /(х) по ортонормированной системе ь Рассмотрим линейную комбинацию где n ^ 1 - фиксированное целое число, и найдем значения постоянных, при которых интеграл принимает минимальное значение. Запишем его подробнее Интефируя почленно, в силу ортонормированности системы получим Первые два слагаемых в правой части равенства (7) не зависят, а третье слагаемое неотрицательно. Поэтому интеграл (*) принимает минимальное значение при ак = ск Интеграл называют средним квадратичным приближением функции /(х) линейной комбинацией Тп(х). Таким образом, среднее квадратичное приближение функции/\ принимает минимальное значение, когда. когда Тп(х) есть 71-я частичная сумма ряда Фурье функции /(х) по системе {. Полагая ак = ск, из (7) получаем Равенство (9) называется тождеством Бесселя. Так как его левая часть неотрицательна, то из него следует неравенство Бесселя Поскольку я здесь произвольно, то неравенство Бесселя можно представить в усиленной форме т. е. для всякой функции / ряд из квадратов коэффициентов Фурье этой функции по ортонормированной системе } сходится. Так как система ортонормирована на отрезке [-х, тг], то неравенство (10) в переводе на привычную запись тригонометрического ряда Фурье дает соотношение do справедливое для любой функции /(х) с интегрируемым квадратом. Если f2(x) интегрируема, то в силу необходимого условия сходимости ряда в левой части неравенства (11) получаем, что. Равенство Парсе валя Для некоторых систем {^„(х)} знак неравенства в формуле (10) может быть заменен (для всех функций /(х) 6 Ч) знаком равенства. Получаемое равенство называется равенством Парсеваля-Стеклова (условием полноты). Тождество Бесселя (9) позволяет записать условие (12) в равносильной форме Тем самым выполнение условия полноты означает, что частичные суммы Sn(x) ряда Фурье функции /(х) сходятся к функции /(х) в среднем, т.е. по норме пространства 6]. Определение. Ортонормированная система { называется полной в Ь2[ау Ь], если всякую функцию можно с любой точностью приблизить в среднем линейной комбинацией вида с достаточно большим числом слагаемых, т. е. если для всякой функции/(х) € Ь2[а, Ь\ и для любого е > 0 найдется натуральное число nq и числа а\, а2у..., такие, что No Из приведенных рассуждений следует Теорема 7. Если ортонормированием система } полна в пространстве ряд Фурье всякой функции / по этой системе сходится к f(x) в среднем, т. е. по норме Можно показать, что тригонометрическая система полна в пространстве, Отсюда следует утверждение. Теорема 8. Если функция /о ее тригонометрический ряд Фурье сходится к ней в среднем. 9.5. Замкнутые системы. Полнота и замкнутость систем Определение. Ортонормированная система функций \, называется замкнутой, если в пространстве Li\a, Ь) не существует отличной от нуля функции, ортогональной ко всем функциям В пространстве L2\a, Ь\ понятия полноты и замкнутости ортонормированных систем совпадают. Упражнения 1. Разложите в ряд Фурье в интервале (-я-, ж) функцию 2. Разложите в ряд Фурье в интервале (-тг, тг) функцию 3. Разложите в ряд Фурье в интервале (-тг, тг) функцию 4. Разложите в ряд Фурье в интервале (-jt, тг) функцию 5. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = ж + х. 6. Разложите в ряд Фурье в интервале (-jt, тг) функцию п 7. Разложите в ряд Фурье в интервале (-тг, ж) функцию /(х) = sin2 х. 8. Разложите в ряд Фурье в интервале (-тг, jt) функцию f(x) = у 9. Разложите в ряд Фурье в интервале (-тт, -к) функцию /(х) = | sin х|. 10. Разложите в ряд Фурье в интервале (-я-, тг) функцию /(х) = §. 11. Разложите в ряд Фурье в интервале (-тг, тг) функцию f(x) = sin §. 12. Разложите в ряд Фурье функцию f(x) = п -2х, заданную в интервале (0, х), продолжив ее в интервал (-х, 0): а) четным образом; б) нечетным образом. 13. Разложите в ряд Фурье по синусам функцию /(х) = х2, заданную в интервале (0, х). 14. Разложите в ряд Фурье функцию /(х) = 3-х, заданную в интервале (-2,2). 15. Разложите в ряд Фурье функцию f(x) = |х|, заданную в интервале (-1,1). 16. Разложите в ряд Фурье по синусам функцию f(x) = 2х, заданную в интервале (0,1).

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ Р. К. Бельхеева РЯДЫ ФУРЬЕ В ПРИМЕРАХ И ЗАДАЧАХ Учебное пособие Новосибирск 211

2 УДК ББК В161 Б44 Б44 Бельхеева Р. К. Ряды Фурье в примерах и задачах: Учебное пособие / Новосиб. гос. ун-т. Новосибирск, с. ISBN В учебном пособии излагаются основные сведения о рядах Фурье, приведены примеры на каждую изучаемую тему. Детально разобран пример применения метода Фурье к решению задачи о поперечных колебаниях струны. Приведен иллюстративный материал. Имеются задачи для самостоятельного решения. Предназначено для студентов и преподавателей физического факультета НГУ. Печатается по решению методической комиссии физического факультета НГУ. Рецензент д-р физ.-мат. наук. В. А. Александров Пособие подготовлено в рамках реализации Программы развития НИУ-НГУ на гг. ISBN c Новосибирский государственный университет, 211 c Бельхеева Р. К., 211

3 1. Разложение 2π-периодической функции в ряд Фурье Определение. Рядом Фурье функции f(x) называется функциональный ряд a 2 + (a n cosnx + b n sin nx), (1) где коэффициенты a n, b n вычисляются по формулам: a n = 1 π b n = 1 π f(x) cosnxdx, n =, 1,..., (2) f(x) sin nxdx, n = 1, 2,.... (3) Формулы (2) (3) называют формулами Эйлера Фурье. Тот факт, что функции f(x) соответствует ряд Фурье (1) записывают в виде формулы f(x) a 2 + (a n cosnx + b n sin nx) (4) и говорят, что правая часть формулы (4) является формальным рядом Фурье функции f(x). Другими словами, формула (4) означает только то, что коэффициенты a n, b n найдены по формулам (2), (3). 3

4 Определение. 2π-периодическая функция f(x) называется кусочно-гладкой, если в промежутке [, π] найдется конечное число точек = x < x 1 . Рассмотрим два условия: а) f(l x) = f(x); б) f(l + x) = f(x), x [, l/2]. С геометрической точки зрения условие (а) означает, что график функции f(x) симметричен относительно вертикальной прямой x = l/2, а условие (б) что график f(x) центрально симметричен относительно точки (l/2;) на оси абсцисс. Тогда справедливы следующие утверждения: 1) если функция f(x) четная и выполнено условие (а), то b 1 = b 2 = b 3 =... =, a 1 = a 3 = a 5 =... = ; 2) если функция f(x) четная и выполнено условие (б), то b 1 = b 2 = b 3 =... =, a = a 2 = a 4 =... = ; 3) если функция f(x) нечетная и выполнено условие (а), то a = a 1 = a 2 =... =, b 2 = b 4 = b 6 =... = ; 4) если функция f(x) нечетная и выполнено условие (б), то a = a 1 = a 2 =... =, b 1 = b 3 = b 5 =... =. ЗАДАЧИ В задачах 1 7 нарисуйте графики и найдите ряды Фурье для функций, { предполагая, что они имеют период 2π:, если < x a cosx + a2 В задачах найдите ряды Фурье в комплексной форме для функций. 26. f(x) = sgn x, π < x < π. 27. f(x) = ln(1 2a cosx + a 2), a < 1. 1 a cosx 28. f(x) = 1 2a cosx + a2, a < Докажите, что функция f, определенная в промежутке [, π], вещественнозначна, если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является четной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n = ±1, ±2, Докажите, что функция f, определенная в промежутке [, π], является нечетной (т. е. удовлетворяет соотношению f(x) = f(x)), если и только если коэффициенты c n ее комплексного ряда Фурье связаны соотношениями c n = c n, n =, ±1, ±2,.... Ответы 1 2π 24. a n a π a n i + e 2inx, где подразумевается, что слагаемое, соответствующее n =, пропущено. π n n= a n n cosnx. 28. a n cosnx. n= 46

47 5. Равенство Ляпунова Теорема (равенство Ляпунова). Пусть функция f: [, π] R такова, что f 2 (x) dx < +, и пусть a n, b n ее коэффициенты Фурье. Тогда справедливо равенство, a (a 2 n + b2 n) = 1 π называемое равенством Ляпунова. f 2 (x) dx, ПРИМЕР 13. Напишем равенство Ляпунова для функции { 1, если x < a, f(x) =, если a < x < π и найдем с его помощью суммы числовых рядов + sin 2 na n 2 и + Решение. Очевидно, 1 (2n 1) 2. 1 π f 2 (x) dx = 1 π a a dx = 2a π. Так как f(x) четная функция, то для всех n имеем b n =, a = 2 π f(x) dx = 2 π a dx = 2a π, 47

48 a n = 2 π f(x) cosnxdx = 2 π a cos nxdx = 2 sin na πn. Поэтому равенство Ляпунова для функции f(x) принимает вид: 2 a 2 π + 4 sin 2 na = 2a 2 π 2 n 2 π. Из последнего равенства для a π находим sin 2 na n 2 = a(π a) 2 Полагая a = π 2, получаем sin2 na = 1 при n = 2k 1 и sin 2 na = при n = 2k. Следовательно, k=1 1 (2k 1) 2 = = π2 8. ПРИМЕР 14. Напишем равенство Ляпунова для функции f(x) = x cosx, x [, π], и найдем с его помощью сумму числового ряда (4n 2 + 1) 2 (4n 2 1) 4. 1 π Решение. Прямые вычисления дают = π π f 2 (x) dx = 1 π x 2 cos 2 xdx = 1 π x sin 2xdx = π π x cos x = π x 21 + cos 2x dx = 2 π 1 4π cos 2xdx =

49 Поскольку f(x) четная функция, то для всех n имеем b n =, a n = 2 π = 1 π 1 = π(n + 1) = f(x) cosnxdx = 2 π 1 cos(n + 1)x π(n + 1) 2 x cosxcosnxdx = x (cos(n + 1)x + cos(n 1)x) dx = 1 π sin(n + 1)xdx sin(n 1)xdx = π(n 1) π π 1 + cos(n 1)x = π(n 1) 2 1 (= (1) (n+1) 1) 1 (+ (1) (n+1) 1) = π(n + 1) 2 π(n 1) 2 () = (1)(n+1) 1 1 π (n + 1) + 1 = 2 (n 1) 2 = 2 (1)(n+1) 1 n k π (n 2 1) = π (4k 2 1) 2, если n = 2k, 2, если n = 2k + 1. Коэффициент a 1 необходимо вычислить отдельно, поскольку в общей формуле при n = 1 знаменатель дроби обращается в ноль. = 1 π a 1 = 2 π f(x) cosxdx = 2 π x(1 + cos 2x)dx = π 2 1 2π 49 x cos 2 xdx = sin 2xdx = π 2.

50 Таким образом, равенство Ляпунова для функции f(x) имеет вид: 8 π + π (4n 2 + 1) 2 π 2 (4n 2 1) = π , откуда находим сумму числового ряда (4n 2 + 1) 2 (4n 2 1) = π π ЗАДАЧИ 32. Напишите равенство Ляпунова для функции { x f(x) = 2 πx, если x < π, x 2 πx, если π < x. 33. Напишите равенства Ляпунова для функций f(x) = cos ax и g(x) = sin ax, x [, π]. 34. Используя результат предыдущей задачи и предполагая, что a не является целым числом, выведите следующие классические разложения функций πctgaπ и (π/ sin aπ) 2 по рациональным функциям: πctgaπ = 1 a + + 2a a 2 n 2, (π) = sin aπ (a n) 2. n= 35. Выведите комплексную форму обобщенного равенства Ляпунова. 36. Покажите, что комплексная форма равенства Ляпунова справедлива не только для вещественнозначных функций, но и для комплекснозначных функций. 5

51 π (2n + 1) = π sin 2απ 2απ = 2sin2 απ α 2 π 2 Ответы + 4 sin2 απ π 2 α 2 (α 2 n 2) 2; sin 2απ 1 2απ = απ n 2 4sin2 π 2 (α 2 n 2) 2. 1 π 35. f(x)g(x) dx= c n d n, где c n коэффициент Фурье 2π функции f(x), а d n коэффициент Фурье функции g(x). 6. Дифференцирование рядов Фурье Пусть f: R R непрерывно дифференцируемая 2π-периодическая функция. Ее ряд Фурье имеет вид: f(x) = a 2 + (a n cos nx + b n sin nx). Производная f (x) этой функции будет непрерывной и 2π-периодической функцией, для которой можно записать формальный ряд Фурье: f (x) a 2 + (a n cos nx + b n sin nx), где a, a n, b n, n = 1, 2,... коэффициенты Фурье функции f (x). 51

52 Теорема (о почленном дифференцировании рядов Фурье). При сделанных выше предположениях справедливы равенства a =, a n = nb n, b n = na n, n 1. ПРИМЕР 15. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажем, что при выполнении условия f(x)dx = имеет место неравенство 2 dx 2 dx, называемое неравенством Стеклова, и убедимся, что равенство в нем осуществляется лишь для функций вида f(x) = A cosx. Иными словами, неравенство Стеклова дает условия, при выполнении которых из малости производной (в среднеквадратичном) следует малость функции (в среднеквадратичном). Решение. Продолжим функцию f(x) на промежуток [, ] четным образом. Обозначим продолженную функцию тем же символом f(x). Тогда продолженная функция будет непрерывной и кусочно-гладкой на отрезке [, π]. Так как функция f(x) непрерывна, то f 2 (x) непрерывна на отрезке и 2 dx < +, следовательно, можно применить теорему Ляпунова, согласно которой имеет место равенство 1 π 2 dx = a () a 2 n + b 2 n. 52

53 Так как продолженная функция четная, то b n =, a = по условию. Следовательно, равенство Ляпунова принимает вид 1 π 2 dx = a 2 π n. (17) Убедимся, что для f (x) выполняется заключение теоремы о почленном дифференцировании ряда Фурье, то есть что a =, a n = nb n, b n = na n, n 1. Пусть производная f (x) претерпевает изломы в точках x 1, x 2,..., x N в промежутке [, π]. Обозначим x =, x N+1 = π. Разобьем промежуток интегрирования [, π] на N +1 промежуток (x, x 1),..., (x N, x N+1), на каждом из которых f(x) непрерывно дифференцируема. Тогда, используя свойство аддитивности интеграла, а затем интегрируя по частям, получим: b n = 1 π = 1 π = 1 π f (x) sin nxdx = 1 π N f(x) sin nx j= N f(x) sin nx j= x j+1 x j x j+1 x j n n π N j= x j+1 x j x j+1 x j f (x) sin nxdx = f(x) cosnxdx = f(x) cosnxdx = = 1 π [(f(x 1) sin nx 1 f(x) sin nx) + + (f(x 2) sinnx 2 f(x 1) sin nx 1)

54 + (f(x N+1) sin nx N+1 f(x N) sin nx N)] na n = = 1 π na n = = 1 π na n = na n. x j+1 a = 1 f (x)dx = 1 N f (x)dx = π π j= x j = 1 N x j+1 f(x) π = 1 (f(π) f()) =. x j π j= Последнее равенство имеет место в силу того, что функция f(x) была продолжена четным образом, а значит f(π) = f(). Аналогично получим a n = nb n. Мы показали, что теорема о почленном дифференцировании рядов Фурье для непрерывной кусочно-гладкой 2π-периодической функции, производная которой в промежутке [, π] претерпевает разрывы первого рода, верна. Значит f (x) a 2 + (a n cosnx + b n sin nx) = (na n)sin nx, так как a =, a n = nb n =, b n = na n, n = 1, 2,.... Поскольку 2 dx < +, то по равенству Ляпунова 1 π 2 dx = 54 n 2 a 2 n. (18)

55 Так как каждый член ряда в (18) больше или равен соответствующего члена ряда в (17), то 2 dx 2 dx. Вспоминая, что f(x) является четным продолжением исходной функции, имеем 2 dx 2 dx. Что и доказывает равенство Стеклова. Теперь исследуем для каких функций в неравенстве Стеклова имеет место равенство. Если хоть для одного n 2, коэффициент a n отличен от нуля, то a 2 n < na 2 n. Следовательно, равенство a 2 n = n 2 a 2 n возможно только если a n = для n 2. При этом a 1 = A может быть произвольным. Значит в неравенстве Стеклова равенство достигается только на функциях вида f(x) = A cosx. Отметим, что условие πa = f(x)dx = (19) существенно для выполнения неравенства Стеклова, ведь если условие (19) нарушено, то неравенство примет вид: a a 2 n n 2 a 2 n, а это не может быть верно при произвольном a. 55

56 ЗАДАЧИ 37. Пусть кусочно-гладкая функция f(x) непрерывна в промежутке [, π]. Докажите, что при выполнении условия f() = f(π) = имеет место неравенство 2 dx 2 dx, также называемое неравенством Стеклова, и убедитесь, что равенство в нем имеет место лишь для функций вида f(x) = B sin x. 38. Пусть функция f непрерывна в промежутке [, π] и имеет в нем (за исключением разве лишь конечного числа точек) производную f (x), интегрируемую с квадратом. Докажите, что если при этом выполнены условия f() = f(π) и f(x) dx =, то имеет место неравенство 2 dx 2 dx, называемое неравенством Виртингера, причем равенство в нем имеет место лишь для функций вида f(x) = A cosx + B sin x. 56

57 7. Применение рядов Фурье для решения дифференциальных уравнений в частных производных При изучении реального объекта (явления природы, производственного процесса, системы управления и т. д.) существенными оказываются два фактора: уровень накопленных знаний об исследуемом объекте и степень развития математического аппарата. На современном этапе научных исследований выработалась следующая цепочка: явление физическая модель математическая модель. Физическая постановка (модель) задачи состоит в следующем: выявляются условия развития процесса и главные факторы на него влияющие. Математическая постановка (модель) заключается в описании выбранных в физической постановке факторов и условий в виде системы уравнений (алгебраических, дифференциальных, интегральных и др.). Задача называется корректно поставленной, если в определенном функциональном пространстве решение задачи существует, единственно и непрерывно зависит от начальных и граничных условий. Математическая модель не бывает тождественна рассматриваемому объекту, а является его приближенным описанием Вывод уравнения свободных малых поперечных колебаний струны Будем следовать учебнику . Пусть концы струны закреплены, а сама струна туго натянута. Если вывести струну из положения равновесия (например, оттянуть или ударить по ней), то струна начнет 57

58 колебаться. Будем предполагать, что все точки струны движутся перпендикулярно ее положению равновесия (поперечные колебания), причем в каждый момент времени струна лежит в одной и той же плоскости. Возьмем в этой плоскости систему прямоугольных координат xou. Тогда, если в начальный момент времени t = струна располагалась вдоль оси Ox, то u будет означать отклонение струны от положения равновесия, то есть, положению точки струны с абсциссой x в произвольный момент времени t соответствует значение функции u(x, t). При каждом фиксированном значении t график функции u(x, t) представляет форму колеблющейся струны в момент времени t (рис. 32). При постоянном значении x функция u(x, t) дает закон движения точки с абсциссой x вдоль прямой, параллельной оси Ou, производная u t скорость этого движения, а вторая производная 2 u t 2 ускорение. Рис. 32. Силы, приложенные к бесконечно малому участку струны Составим уравнение, которому должна удовлетворять функция u(x, t). Для этого сделаем еще несколько упрощающих предположений. Будем считать струну абсолютно гиб- 58

59 кой, то есть будем считать, что струна не сопротивляется изгибу; это означает, что напряжения, возникающие в струне, всегда направлены по касательным к ее мгновенному профилю. Струна предполагается упругой и подчиняющейся закону Гука; это означает, что изменение величины силы натяжения пропорционально изменению длины струны. Примем, что струна однородна; это означает, что ее линейная плотность ρ постоянна. Внешними силами мы пренебрегаем. Это и означает, что мы рассматриваем свободные колебания. Мы будем изучать только малые колебания струны. Если обозначить через ϕ(x, t) угол между осью абсцисс и касательной к струне в точке с абсциссой x в момент времени t, то условие малости колебаний заключается в том, что величиной ϕ 2 (x, t) можно пренебрегать по сравнению с ϕ(x, t), т. е. ϕ 2. Так как угол ϕ мал, то cosϕ 1, ϕ sin ϕ tg ϕ u следовательно, величиной (u x x,) 2 также можно пренебрегать. Отсюда сразу следует, что в процессе колебания можем пренебречь изменением длины любого участка струны. Действительно, длина кусочка струны M 1 M 2, проектирующаяся в промежуток оси абсцисс, где x 2 = x 1 + x, равна l = x 2 x () 2 u dx x. x Покажем, что при наших предположениях величина силы натяжения T будет постоянной вдоль всей струны. Возьмем для этого какой либо участок струны M 1 M 2 (рис. 32) в момент времени t и заменим действие отброшенных участ- 59

60 ков силами натяжений T 1 и T 2. Так как по условию все точки струны движутся параллельно оси Ou и внешние силы отсутствуют, то сумма проекций сил натяжения на ось Ox должна равняться нулю: T 1 cosϕ(x 1, t) + T 2 cosϕ(x 2, t) =. Отсюда в силу малости углов ϕ 1 = ϕ(x 1, t) и ϕ 2 = ϕ(x 2, t) заключаем, что T 1 = T 2. Обозначим общее значение T 1 = T 2 через T. Теперь вычислим сумму проекций F u этих же сил на ось Ou: F u = T sin ϕ(x 2, t) T sin ϕ(x 1, t). (2) Так как для малых углов sin ϕ(x, t) tg ϕ(x, t), а tg ϕ(x, t) u(x, t)/ x, то уравнение (2) можно переписать так F u T (tg ϕ(x 2, t) tg ϕ(x 1, t)) (u T x (x 2, t) u) x (x 1, t) x x T 2 u x 2(x 1, t) x. Так как точка x 1 выбрана произвольно, то F u T 2 u x2(x, t) x. После того как найдены все силы, действующие на участок M 1 M 2, применим к нему второй закон Ньютона, согласно которому произведение массы на ускорение равно сумме всех действующих сил. Масса кусочка струны M 1 M 2 равна m = ρ l ρ x, а ускорение равно 2 u(x, t). Уравнение t 2 Ньютона принимает вид: 2 u t (x, t) x = u 2 α2 2 x2(x, t) x, где α 2 = T ρ постоянное положительное число. 6

61 Сокращая на x, получим 2 u t (x, t) = u 2 α2 2 x2(x, t). (21) В результате мы получили линейное однородное дифференциальное уравнение с частными производными второго порядка с постоянными коэффициентами. Его называют уравнением колебаний струны или одномерным волновым уравнением. Уравнение (21) по сути является переформулировкой закона Ньютона и описывает движение струны. Но в физической постановке задачи присутствовали требования о том, что концы струны закреплены и положение струны в какойто момент времени известно. Уравнениями эти условия будем записывать так: а) будем считать, что концы струны закреплены в точках x = и x = l, т. е. будем считать, что для всех t выполнены соотношения u(, t) =, u(l, t) = ; (22) б) будем считать, что в момент времени t = положение струны совпадает с графиком функции f(x), т. е. будем считать, что для всех x [, l] выполнено равенство u(x,) = f(x); (23) в) будем считать, что в момент времени t = точке струны с абсциссой x придана скорость g(x), т. е. будем считать, что u (x,) = g(x). (24) t Соотношения (22) называются граничными условиями, а соотношения (23) и (24) называются начальными условиями. Математическая модель свободных малых поперечных 61

62 колебаний струны заключается в том, что надо решить уравнение (21) с граничными условиями (22) и начальными условиями (23) и (24) Решение уравнения свободных малых поперечных колебаний струны методом Фурье Решения уравнения (21) в области x l, < t . Подставляя (25) в (21), получим: X T = α 2 X T, (26) или T (t) α 2 T(t) = X (x) X(x). (27) Говорят, что произошло разделение переменных. Так как x и t не зависят друг от друга, то левая часть в (27) не зависит от x, а правая от t и общая величина этих отношений 62

63 должна быть постоянной, которую обозначим через λ: T (t) α 2 T(t) = X (x) X(x) = λ. Отсюда получаем два обыкновенных дифференциальных уравнения: X (x) λx(x) =, (28) T (t) α 2 λt(t) =. (29) При этом граничные условия (22) примут вид X()T(t) = и X(l)T(t) =. Поскольку они должны выполняться для всех t, t >, то X() = X(l) =. (3) Найдем решения уравнения (28), удовлетворяющего граничным условиям (3). Рассмотрим три случая. Случай 1: λ >. Обозначим λ = β 2. Уравнение (28) принимает вид X (x) β 2 X(x) =. Его характеристическое уравнение k 2 β 2 = имеет корни k = ±β. Следовательно, общее решение уравнения (28) имеет вид X(x) = C e βx + De βx. Мы должны подобрать постоянные C и D так, чтобы соблюдались граничные условия (3), т. е. X() = C + D =, X(l) = C e βl + De βl =. Поскольку β, то эта система уравнений имеет единственное решение C = D =. Следовательно, X(x) и 63

64 u(x, t). Тем самым, в случае 1 мы получили тривиальное решение, которое далее рассматривать не будем. Случай 2: λ =. Тогда уравнение (28) принимает вид X (x) = и его решение, очевидно, задается формулой: X(x) = C x+d. Подставляя это решение в граничные условия (3), получим X() = D = и X(l) = Cl =, значит, C = D =. Следовательно, X(x) и u(x, t), и мы опять получили тривиальное решение. Случай 3: λ

Выбор редакции
В настоящее время мышцы классифицируют с учетом их формы, строения, расположения и функции. Форма мышц . Наиболее часто встречаются...

Зевота – это безусловный рефлекс, проявляющийся в виде особого дыхательного акта происходящего непроизвольно. Все начинается с...

Водорастворимые и жирорастворимые витамины по-разному усваиваются. Водорастворимые витамины — это весь ряд витаминов В-группы и...

Хлористый калий — это удобрительный состав, содержащий в себе много калия. Используют его в агротехнике с целью восполнения питательных...
Моча у не имеющего проблем со здоровьем человека обычно желтого цвета. Любое резкое изменение цвета должно вызывать беспокойство,...
Методический приём технологии критического мышления «зигзаг».Прием "Зигзаг" придуман для тех случаев, когда требуется в короткий срок...
Игра «Угадай, кто ты» — интересное и весёлое времяпровождение, как для больших, так и для маленьких компаний. Играя в неё, вы забудете...
Артиллерийские батареи, мощные системы заграждений и крупные силы врага. Скалистый мыс Крестовый казался неприступным. Но он был нужен...
Непреложным и обязательным правилом любой религии в воспитании человека всегда считалось развитие духовности и благожелательности....