Гром-камень. Могли ли передвинуть? Забытая древняя технология – умение размягчать камни


Как известно, все в нашем мире обладает сознанием, даже воздух и камни. Рассмотрим 3 примера минералов:

Камни-гремлины:

Оригинал взят у asaratov в Трованты - живые камни Румынии...

В центре и на юге Румынии, вдали от городов, встречаются удивительные камни. Местные жители даже придумали им специальное название - трованты. Эти камни могут не только расти, но и... размножаться.

В большинстве случаев камни эти имеют округлую или обтекаемую форму и лишены острых сколов. На вид они мало чем отличаются от любых других валунов, коих в этих местах множество. Но после дождя с тровантами начинает твориться нечто невероятное: они, словно грибы, принимаются расти и увеличиваться в размерах.

Каждый тровант весом всего лишь несколько граммов может со временем вырасти и потяжелеть более чем на тонну. Молодые камни растут быстрее, с возрастом же рост трованта замедляется.

Состоят растущие камни по большей части из песчаника. Их внутреннее строение тоже весьма необычно: если распилить камень пополам, то на срезе, подобно спилу дерева, можно разглядеть несколько возрастных колец, сосредоточенных вокруг небольшого твердого ядра.


Несмотря на всю уникальность тровантов, геологи не спешат относить их в разряд необъяснимых для науки явлений. Согласно мнению ученых, растущие камни хоть и необычны, но их природа поддается объяснению. Геологи утверждают, что трованты - результат длительного процесса цементации песка, происходившего миллионы лет в недрах земли. На поверхности такие камни оказались в ходе сильной сейсмической активности.

Нашли ученые и объяснение росту тровантов: камни увеличиваются в размерах благодаря большому содержанию различных минеральных солей, находящихся под их оболочкой. Когда поверхность намокает, эти химические соединения начинают расширяться и давить на песок, отчего камень «растет».


Размножение почкованием

Тем не менее есть у тровантов одна особенность, которую геологи объяснить не в состоянии. Живые камни, помимо того что растут, способны еще и размножаться. Происходит это так: после того как поверхность камня намокнет, на ней появляется небольшая выпуклость. Со временем она разрастается, когда же вес нового камня становится достаточно большим, он отламывается от материнского.

Строение у новых тровантов такое же, как и у других, более старых камней. Внутри также присутствует ядро, в чем и заключается основная загадка для ученых. Если рост камня хоть как-то можно объяснить с научной точки зрения, то процесс деления каменного ядра не поддается никакой логике. В целом процесс размножения тровантов напоминает почкование, отчего некоторые специалисты всерьез задумались над вопросом, не являются ли они неизвестной доселе неорганической формой жизни.


Местные жители уже не одну сотню лет знают о необычных свойствах тровантов, но особого внимания им не уделяют. Раньше растущие камни использовались в качестве строительных материалов. Трованты часто можно встретить и на румынских кладбищах -большие камни устанавливают в качестве надгробий по причине их необычного внешнего вида.

Отмечена за некоторыми тровантами и еще одна фантастическая способность. Подобно знаменитым ползающим камням из калифорнийского заповедника Долина Смерти, они порой передвигаются с места на место.

Музей под открытым небом

Сегодня трованты - это одна из тех достопримечательностей Центральной Румынии, поглазеть на которую съезжаются туристы из всех стран мира. В свою очередь, находчивые румыны изготавливают из небольших тровантов сувениры и украшения, а потому у каждого гостя есть возможность привезти с собой из путешествия частичку каменного чуда. Многие владельцы камней-сувениров утверждают, что памятные изделия из тровантов, намокнув, начинают расти, а еще они порой самовольно перемещаются по дому, что производит достаточно жуткое впечатление.


Самое большое скопление растущих камней зафиксировано в румынском жудеце (области) Вылча. На его территории встречаются трованты всевозможных форм, размеров и цветов. В связи с большим интересом туристов в 2006 году вылчинскими властями в деревне Костешть был создан единственный во всей стране музей тровантов под открытым небом. Его площадь составляет 1,1 гектара. На территории музея собраны самые необычные по виду растущие камни со всей округи. Желающие за небольшую плату могут ознакомиться с экспозицией и приобрести небольшие образцы в качестве сувениров.

Русские сородичи

Камни, подобные румынским тровантам, встречаются и в других странах мира. Есть нечто похожее и у нас в России. Вот уже несколько лет на территории Колпнянского района Орловской области в деревне Андреевка и ее окрестностях из-под земли, словно по волшебству, на поверхности появляются округлые каменные глыбы. Их можно увидеть на полях, огородах, возле домов и на приусадебных участках.
Орловские растущие камни на вид напоминают слипшийся песок, но это обманчивая хрупкость. На самом деле камни эти очень прочны, и для того чтобы отколоть от них даже небольшой фрагмент, необходимо приложить большие усилия.

Размеры камней сильно разнятся. Встречаются в окрестностях Андреевки как небольшие растущие камни, так и огромные глыбы по нескольку метров в длину, напоминающие строительные плиты.
Понять природу этого явления пытаются и геологи, и краеведы. У местных жителей растущие камни пользуются большой популярностью. Их наделяют мистическими свойствами, считают, что валуны, растущие из-под земли, богаты животворящей силой матери-земли. Кое-кто даже перевез несколько камней и украсил ими дорогу к местным святым источникам. Другие сооружают из камней декоративные рокарии на своих приусадебных участках и используют их в качестве отделочных материалов для домов.

Необычность тровантов порой приводит к возникновению весьма смелых и, на первый взгляд, неправдоподобных мнений и гипотез, признавать достоверность которых официальная наука не спешит. Ряд исследователей, как уже говорилось, полагает, что трованты -представители неорганической формы жизни. Принцип их существования и строение не имеют ничего общего с теми же характеристиками уже изученных видов флоры и фауны. При этом растущие камни могут оказаться как коренными жителями нашей планеты, тысячелетиями незаметно существовавшими бок о бок с человеком, так и представителями неземных форм жизни, попавшими на землю с метеоритами или завезенными пришельцами.

Вполне возможно, что люди ищут иные формы жизни не там, где следует, настоящие пришельцы давно уже среди нас, а мы их попросту не замечаем.

Михаил КУЗЬМИН
"Тайны ХХ века " май 2012

Оригинал взят у masterok в Ползающие камни Долины Смерти

Ну вот еще одна всем известная загадка, а может быть и не загадка, но тумана и таинственности напущено уже достаточно:-) Давайте разберемся...

Движущиеся камни (англ. Sailing stones), также называются скользящие или ползущие камни — геологический феномен, обнаруженный на высохшем озере Рейстрэк-Плайя в Долине Смерти в США. Камни
медленно двигаются по глинистому дну озера, о чём свидетельствуют длинные следы, остающиеся за ними. Камни передвигаются самостоятельно без помощи живых существ, однако никто никогда не видел и не фиксировал перемещение на камеру.

Камни приходят в движение всего один раз за два или три года, причём большая часть следов сохраняется 3-4 года. Камни с ребристой нижней поверхностью оставляют более прямые следы, а камни, лежащие на плоской стороне, блуждают из стороны в сторону. Иногда камни переворачиваются, что отражается на размере их следа.


До начала XX века явление объяснялось сверхъестественными силами, затем в период становления электромагнетизма возникло предположение о воздействии магнитных полей, которое, в общем-то, ничего не объясняло.

В 1948 году геологи Джим Макалистер и Аллен Агню нанесли на карту расположение камней и отметили их следы. Немного позже сотрудники Службы национальных парков США составили детальное описание места и журнал Life опубликовал фотографии с Рейстрэк-Плайя, после чего начались спекуляции на тему того, что заставляет камни двигаться. Большинство гипотез сходилось на том, что ветер при влажной поверхности дна озера по крайней мере отчасти объясняет феномен.

В 1955 году геолог Джордж Стэнли из университета Мичигана опубликовал статью, в которой утверждал, что камни слишком тяжелы, и местный ветер не в состоянии их передвинуть. Он и его соратник предложили теорию, согласно которой в ходе сезонного затопления высохшего озера на воде образуется ледяная корка, способствующая движению камней.



Кликабельно 4000 рх

В мае 1972 года Роберт Шарп (Robert Sharp, Калифорнийский технологический институт) и Дуайт Кэри (Dwight Carey, Университет Калифорнии в Лос-Анджелесе) начали программу мониторинга перемещения камней. Тридцать камней с относительно свежими следами были промаркированы, а их расположение было отмечено колышками. За 7 лет, на протяжении которых фиксировалось положение камней, учёные создали модель, согласно которой в дождливый сезон в южной части озера скапливается вода, которая распространяется ветром по дну высохшего озера, смачивая его поверхность. В результате твёрдая глинистая почва сильно размокает и коэффициент трения резко снижается, что позволяет ветру сдвинуть с места даже один из самых крупных камней (его назвали Karen), который весил около 350 килограммов.


Также были протестированы гипотезы перемещения с помощью льда. Вода, распространяющаяся под воздействием ветра, по ночам может покрываться ледяной коркой, и расположенные на пути воды камни будут вморожены в слой льда. Лёд вокруг камня мог увеличивать сечение взаимодействия с ветром и помогать перемещать камни вдоль потоков воды. В качестве эксперимента вокруг камня шириной 7,5 см и весом 0,5 кг был создан загон диаметром 1,7 м.

Расстояние между опорами забора варьировалось от 64 до 76 см. Если вокруг камней образовывался слой льда, то при движении он мог зацепиться за опору забора и замедлить движение или изменить траекторию, что отразилось бы на следе от камня. Однако подобных эффектов не наблюдалось — в первую зиму камень прошёл рядом с опорой забора, переместившись за огороженную территорию на 8,5 м в направлении северо-запада. В следующий раз внутрь загона были помещены 2 более тяжёлых камня — один из них через пять лет переместился в том же направлении, что и первый, однако его компаньон за период исследований не сдвинулся с места. Этот факт свидетельствовал о том, что если ледяная корка имеет влияние на движение камней, то она должна быть мала.


Десять из промаркированных камней сдвинулись в первую зиму исследований, причём камень A (который называли Mary Ann) прополз 64,5 м. Было отмечено, что многие камни также передвигались в следующие два зимних периода, а летом и в иные зимы камни стояли на месте. Под конец исследований (спустя 7 лет) всего два из 30 наблюдаемых камней не поменяли своего местоположения. Размер самого маленького из камней (Nancy) составлял 6,5 см в диаметре, причём этот камень переместился на максимальное суммарное расстояние 262 м и на максимальное расстояние за одну зиму — 201 м. Наиболее массивный камень, перемещение которого было зафиксировано, весил 36 кг.



Кликабельно 1600 рх

В 1993 году Пола Мессина (Paula Messina, Университет штата Калифорния в Сан-Хосе) защитила диссертацию на тему движущихся камней, в которой было показано, что в целом камни не двигались параллельно. По мнению исследователя, это подтверждает то, что лёд никак не способствует движению. После изучения изменений координат 162 камней (которые проводились с помощью GPS), было определено что на перемещение валунов не влияют ни их размер, ни их форма. Оказалось, что характер движения в большой степени определяется положением валуна на Рейстрэк-Плайя. Согласно созданной модели, ветер над озером ведёт себя очень сложным образом, в центре озера даже образуя вихрь.


В 1995 году группа под руководством профессора Джона Рейда отметила высокую похожесть следов зимы 1992-93 года со следами конца 1980-х. Было показано, что по крайней мере некоторые камни двигались с потоками покрытой льдом воды, причём ширина ледяной корки была около 800 м, о чём свидетельствовали характерные следы, процарапанные тонким слоем льда. Также было определено, что граничный слой, в котором ветер замедляется из-за контакта с землёй, на таких поверхностях может быть всего 5 см, что означает возможность воздействия ветров (скорость которых зимой доходит до 145 км/ч) даже на совсем невысокие камни.

Теории, которая объясняла бы, почему стоящие рядом камни могут передвигаться в различных направлениях, когда другие стоят на месте, пока нет. Также непонятно, почему камни «раскиданы» по всему дну озера, тогда как регулярные ветра перемещали бы их к одному из краёв озера.

В некоторых местах нашей планеты, в том числе и в России, издавна находили огромные камни-валуны, которые вдруг снимались с «насиженных мест» и начинали самостоятельно двигаться.

Таков легендарный Синь-камень под Переславлем-Залесским, почитаемый с язычества и до наших дней. Легенда гласит, что в конце XVII века закопанный глубоко да еще придавленный земляным курганом Синь-камень то безмятежно спал по полгода, то вдруг выстреливал, как пушечное ядро. Его топили в Плещеевом озере, но через полвека он самым невероятным образом вернулся на пригорок, где находится и сегодня, привлекая к себе паломников и туристов.


Кликабельно 1600 рх

В Тибете монахи древнейшего Северного монастыря вот уже полтора тысячелетия составляют жизнеописание так называемого Камня Будды. На валуне, по преданию, отпечатались его ладони. Весит эта святыня 1100 килограммов. При этом самостоятельно без чьей-либо помощи поднимается на гору высотой 2565 метров и спускается с нее по спиралевидной траектории. Каждый подъем-спуск точно укладывается в 16 лет.

Что касается других подобных загадок, - продолжает Алексей Махинов, - то за границей, в Калифорнии, например, ими озабочены целые институты. Но пока не разобрались. Лишь предполагают, что дело в сочетании природных условий. Не исключено, что камни двигаются просто по ветру.

Кое-где тоже может включаться природный механизм. Например, мощные морские приливы. Как в Тугурском заливе Охотского моря. Там ежедневные колебания уровня моря достигают 9 метров. Представляете, силища! Я сам видел борозду от камня. Он был немалый - высотой более метра. Море тащило валун за собой полтора километра. Потом отступило, а он остался.

В начале сего года мировую науку обогатила одна экстравагантная теория. Согласно исследованиям французских биологов Арнольда Решара и Пьера Эсколье камни - это живые существа со сверхмедленным процессом жизнедеятельности. Они дышат (чувствительные приборы зафиксировали слабую, но регулярную пульсацию образцов), двигаются. И все - чрезвычайно неспешно: один вдох за две недели, один миллиметр за несколько дней. Кроме того, утверждают ученые, камни меняются структурно, то есть имеют возраст - бывают старыми и молодыми.

Еще одно объяснение движения камней может заключаться, по мнению ученых, в суточных колебаниях температуры. Любое тело (в том числе и исследуемые камни) при нагревании расширяется — это вы должны помнить еще из школьного курса физики. Научно установленный факт, что в летние месяцы освещаемые солнцем стены домов увеличиваются (как бы наклоняются) в южную сторону, что является одной из причин разрушения зданий.

Вот и движущиеся камни якобы днем разогреваются и расширяются в южную сторону, а с наступлением ночной прохлады сокращаются, причем быстрее с северной стороны, где были меньше прогреты. То есть медленно ползут в южную сторону.
А из-под земли камни якобы движутся вверх к солнцу и теплой поверхности. Однако данную теорию быстро признали несостоятельной - ведь следуя ей абсолютно все камни на земле должны упорно год за годом ползти в одном направлении, но очень медленно. А этого почему-то не происходит.

Вспоминали ученые и наличие удельного веса камней и архимедовых сил, которые могут заставлять валуны всплывать и медленно передвигаться в зыбких или сыпучих почвах. Упоминались в исследованиях и такие факторы как изменение гравитационных полей, геомагнитные свойства планеты, вибрации, проседания и прогибания почвы... Однако внятно и доступно объяснить, в чем именно тут дело, пока не получается.

А совсем недавно к исследователям феномена движущихся камней присоединились и астрономы. Дело в том, что подобные объекты удалось обнаружить даже в космосе! Вернее, на открытом несколько лет назад астероиде Эрос , где нашлись россыпи валунов, абсолютно не характерных для почвы астероида, которые к тому же постоянно меняют свое расположение. Тоже ползают, значит.

Пока этот факт туманно объясняют какими-то необычайно подвижными почвами небесного тела с очень маленькой гравитацией. Может, и земные блуждающие камни — пришельцы из космоса (например, метеориты)?
Одним словом, несмотря на обилие фактов и множество теорий остается констатировать сухой факт: на сегодняшний день загадка камней-бродяг так и не разгадана. Существующие на данный момент версии пока не могут удовлетворить серьезных ученых. Поиски разгадки проявления жизни безжизненных вроде бы объектов продолжаются.


Кликабельно

Млечный Путь над Долиной Смерти



Кликабельно



Кликабельно 4000 рх




Кликабельно 5000 рх, панорама


Кликиабельно 4000 рх



Кликабельно 2000 рх


Лабораторная работа № 1

Исследование изменения со временем температуры остывающей воды

Цель работы : исследовать изменение со временем температуры остывающей воды, построить график изменения температуры с течением времени, сравнить количества теплоты отданное остывающей водой за одну из первых и одну из последних минут процесса остывания.

Приборы и материалы : сосуд с горячей водой (70 о С – 80 о С), секундомер, термометр.

1.Какое движение называют тепловыми?

2.Какое состояние называют тепловым равновесием?

3.Какое свойство тел положено в основу измерения температуры?

4.Какую энергию называют внутренней?

5.От чего зависит и от чего не зависит внутренняя энергия?

6. Изменилась ли внутренняя энергия

камня при перемеще нии его из положения 1

в поло жение 3? Почему?

7. У первого сосуда стенки сплошные,

а второй сосуд имеет двой ные стенки,

между которыми находится воздух.

В каком из сосу дов вода остынет быстрее?

Поче му?


Порядок выполнения работы

1. Определите цену деления и абсолютную погрешность термометра.

2. Поместите термометр в воду и каждую минуту снимайте его показания. Результаты измерений занесите в таблицу

Время, t, мин.

0

1

2

3

4

5

6

7

8

Температура, t, °С

3. По полученным данным постройте график изменения температуры с течением времени.

t, °С

0 t, мин

4. Сравните изменения температуры воды, произошедшие за одну из первых и одну из последних минут процесса остывания.

5. Сделайте вывод о том, равномерно ли остывает вода в области более высоких и более низких температур. В области каких температур вода остывает быстрее?


Лабораторная работа № 2

Сравнение количеств теплоты при смешивании воды разной температуры

Цель работы : определить количество теплоты, отданное горячей водой и полученное холодной при теплообмене, и объяснить полученный результат.

Приборы и материалы : калориметр, измерительный цилиндр (мензурка), термометр, стакан, холодная и горячая вода.

Примечание : Калориметр – прибор, позволяющий измерять количество теплоты, выделяющейся и поглощающейся в процессе теплопередачи. Он устроен таким образом, чтобы максимально уменьшить теплообмен с внешними телами, не находящимся в калориметре. Простейший калориметр состоит из двух сосудов, один из которых – алюминиевый – вставлен в другой. Между сосудами образуется воздушный промежуток. Алюминиевый сосуд имеет блестящую поверхность, что уменьшает излучение энергии. Так же сокращает потери энергии слой воздуха, обладающего плохой теплопроводностью, между сосудами.

Правила техники безопасности.

Осторожно! Горячая вода! Будьте осторожны при работе с горячей водой. Не разливайте воду – возможны ожоги. Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана! Снимайте данные, не вынимая термометр из жидкости!

Тренировочные задания и вопросы

1.Какую физическую величину называют количеством теплоты?

2.От каких величин зависит количество теплоты, переданное телу при нагревании?

3. Если мензурки 1 и 2 получат одинаковое

количество тепло ты, то в какой из них

темпера тура воды станет выше? Поче му?

4.Опишите процесс теплообмена,

происходящий при погружении в калориметр

с горячей водой тела, имеющего комнатную

Температуру.

5.На рисунке приведены графики зависимости

температуры от времени при нагревании двух

жидкостей одинаковой массы на одинаковых нагревательных приборах. Чем различаются процессы нагревания этих жидкостей и почему?

t, °С

0 t, мин

Порядок выполнения работы

1.Отмерьте мензуркой 100 мл холодной воды.

2.Измерьте термометром температуру холодной воды t 1 .

3.Отмерьте мензуркой 100 мл горячей воды. Перелейте во внутренний стакан калориметра горячую воду.

4.Измерьте термометром температуру горячей воды t 2

5.Перелейте в калориметр с горячей водой холодную воду. Осторожно помешивая воду, измерьте температуру полученной смеси t.

6.Рассчитайте количество теплоты Q 2 , отданное горячей водой по формуле: Q 2 = с m 2 (t 2 - t )

Q 1 , полученное холодной водой по формуле: Q 1 = с m 1 (t - t 1 )

8.Результаты измерений и вычислений занесите в таблицу.

Масса холодной

воды,

m 1 , кг

Начальная температура холодной воды,

t 1 , ºС

Температура полученной смеси,

t , ºС

Количество теплоты, полученное холодной водой,

Q 1 , Дж

Масса горячей

воды,

m 2 , кг

Начальная температура горячей

воды,

t 2 , ºС

Количество теплоты, отданное горячей водой

Q 2 , Дж

9.Постройте график зависимости количества теплоты от температуры холодной и горячей воды (на одном графике).

10. Сравните количества теплоты Q 1 и Q 2 и сделайте соответствующие выводы.

Лабораторная работа № 3

Измерение удельной теплоёмкости твердого тела

Цель работы : научиться измерять и сравнивать с табличными данными удельную теплоемкость металлического цилиндра.

Приборы и материалы : тело на нити, калориметр, стакан с холодной водой, термометр, весы, разновес, измерительный цилиндр(мензурка), сосуд с горячей водой.

Правила техники безопасности.

Осторожно! Горячая вода! Будьте осторожны при работе с горячей водой. Не разливайте воду – возможны ожоги. Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана! Снимайте данные, не вынимая термометр из жидкости!

Тренировочные задания и вопросы

1.Какую физическую величину называют удельной теплоемкостью вещества?

2.Кубики из алюминия нагрели на 1 °С. Какое количество теплоты нужно для этого?


3. В чугунном котелке нагревали воду. Какой

график зависи мости количества теплоты от

времени построен для воды, а какой для

котелка?

4.В двух непрозрачных сосудах вода

находилась при той же температуре.

Затем сосудам сообщили равные

количества теплоты, и температура в

них повысилась. В каком из сосудов

воды больше? Почему?


Порядок выполнения работы

1.Налейте во внутренний стакан калориметра 100 мл воды комнатной температуры.

2.Измерьте температуру воды в калориметре t 1 .

3.Нагрейте цилиндр в сосуде с горячей водой. Измерьте её температуру (эта температура и будет начальной температурой цилиндра t 2 ).

4.Измерьте температуру воды t в калориметре после опускания цилиндра.

5.С помощью весов определите массу m 2 металлического цилиндра, предварительно осушив его салфеткой.

6.Результаты измерений занесите в таблицу.

Масса воды в калориметре,

m 1 , кг

Начальная температура воды,

t 1 , º C

Масса

цилиндра,

m 2 , кг

Начальная температура цилиндра

t 2 , º C

Общая температура воды и цилиндра

t , º C

7.Рассчитайте количество теплоты Q 1 , которое получила вода при нагревании: Q 1 = с 1 m 1 (t - t 1 )

8. Количество теплоты Q 2 , отданное металлическим цилиндром при

охлаждении: Q 2 = с 2 m 2 (t 2 - t )

9. Так как Q 1 = Q 2 , то с 1 m 1 (t - t 1 )= с 2 m 2 (t 2 - t ) => c 2 =

10.Сравните полученное значение удельной теплоемкости цилиндра с таблицей и определите, из какого материала сделан цилиндр.

11.Найдите абсолютную и относительную ошибку измерений.

Отсюда абсолютная погрешность измерения удельной теплоемкости равна:

12.Окончательный результат запишется следующим образом: с=с 2 ±Δс 2 .

13.Сделайте соответствующие выводы.

Лабораторная работа № 4

Измерение относительной влажности воздуха с помощью термометра

Цель работы : определить относительную влажность воздуха.

Приборы и материалы : термометр демонстрационный, термометр лабораторный, стакан с водой комнатной температуры, кусок марли, психрометрическая таблица.

Правила техники безопасности.

Осторожно! Стекло! Будьте осторожны при работе со стеклянной посудой. Помните, стекло – хрупкий материал, легко трескается при ударах и резкой перемене температуры. Не пейте воду из стакана!

Тренировочные задания и вопросы

1.Какой пар называют насыщенным?

2.Каково важнейшее свойство насыщенных паров?

3.Что показывает относительная влажность воздуха?

4.От чего и как зависит относительная влажность воздуха?

5.Заполните таблицу, используя психрометрическую таблицу.

t сухого

t влажный

Δt

φ

°C

°C

°C

%

Порядок выполнения работы

1.С помощью демонстрационного термометра измерьте температуру воздуха в классе – t сух термометр лабораторный.

2.Оберните резервуар термометра лабораторного марлей так, чтобы кончик ткани свободно свисал вниз, и закрепите его ниткой.

3.Держа термометр за его верхний край, опустите свисающую часть ткани в воду. Вода должна смочить ткань. При этом резервуар термометра должен оставаться выше уровня воды в стакане.

4.Наблюдая за показаниями термометра, запишите самое низкое показание термометра, это значит t влаж .

5. Результаты измерений занесите в таблицу.

Место проведения опыта

Показание сухого термометра

Показание влажного термометра

Разность показаний термометров

Относительная

влажность воздуха

t сух , °С

t вл , °С

Δ t , °C

φ, %

Кабинет

Коридор

Улица

6. С помощью психрометрической таблицы определите относительную влажность воздуха.

7. Соответствует ли полученное значение санитарным нормам?

Лабораторная работа № 5

Сборка электрической цепи и измерение силы тока на различных её участках

Цель работы : научиться собирать простейшую электрическую цепь, пользоваться амперметром, измерять силу тока на различных участках цепи, и убедиться на опыте в том, что сила тока в различных последовательно соединённых участках цепи одинакова на любом участке цепи.

Приборы и материалы : лабораторный источник питания, электрическая лампочка, амперметр, ключ, соединительные провода.

Правила техники безопасности.

Тренировочные задания и вопросы

1.На рисунке изображена электрическая цепь. Из каких элементов состоит эта цепь? Нарисуйте схему электрической цепи.



2.На рисунке изображены шкалы амперметров.

Какова цена деления каждого прибора? Каковы

пределы измерения этих приборов? Каковы

показания приборов?



3.Какова сила тока в лампах?

4.Что означает выражение: «сила тока – физическая величина»?

5.Какое явление используется для установления эталона единицы силы тока?

6.Как включают амперметр в схемах электрических цепей?

Порядок выполнения работы

1. Возьмите амперметр в руки, обратите внимание на знаки «+» и «-», подставленные у зажимов прибора.

Внимание! Нельзя присоединять амперметр к зажимам источника без какого-либо приемника тока, соединенного последовательно с амперметром. Можно испортить амперметр!

Клемму амперметра со знаком + обязательно соединяют с проводником,

который идет от полюса со знаком + источника тока.

2. Рассмотрите шкалу амперметра. Определите:

Цену деления амперметра. Предел измерения амперметра. Погрешность измерения амперметра

3.Соберите электрическую цепь по рисунку 1. Запишите показания амперметра. Нарисуйте схему соединения приборов в цепь


4. Включите амперметр так, как показано на рисунках 2 и 3. Зарисуйте схемы соединения цепи. Снимите показания амперметра в обоих случаях.



5.Запишите показания амперметра в таблицу:

№ опыта

Опыт 1

Опыт 2

Опыт 3

Показания амперметра

I , A

6. Сравните результаты измерений силы тока в трех опытах и сделайте соответствующие выводы

Лабораторная работа № 6

Измерение напряжения на различных участках электрической цепи

Цель работы : научиться включать вольтметр в цепь, измерять напряжение на участке цепи, состоящем из двух последовательно соединенных спиралей, и сравнить его с напряжением на конце каждой спирали.

Приборы и материалы : лабораторный источник питания, два резистора, вольтметр, амперметр, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения.

Тренировочные задания и вопросы

1.Что характеризует напряжение?

2.Как называется прибор для определения напряжения и как он включается на участке цепи?

3. Определите цену деления шкалы вольтметра,

изображенного на рисунке. Каков предел

измерений этого прибора? Чему равно на пряжение

на электрической лампочке?

4.Перечертите схему электрической цепи и

проставьте на схеме символы соответствующих

приборов.

5. Внимательно рассмотрите схемы на рисунке. Все ли в них пра вильно? Если обнаружите ошибки, укажите их и начертите правиль ные схемы цепей.


Порядок выполнения работы

1.Рассмотрите шкалу вольтметра. Определите основные характеристики прибора: предел измерения вольтметра, цена деления шкалы вольтметра, погрешность измерения вольтметра

Внимание! Клемму вольтметра со знаком + обязательно соединяют с клеммой проводника, которая идет от полюса со знаком + источника тока. Никогда не ставьте вольтметр последовательно с источником тока и другими элементами электрической цепи. Испортите амперметр!

2. Соберите электрическую цепь по рисунку 1. Запишите показания вольтметра.


3.Соберите электрическую цепь по рисунку 2. Запишите показания вольтметра. Нарисуйте схему соединения приборов в цепь.


4. Соберите электрическую цепь по рисунку 2. Запишите показания вольтметра. Нарисуйте схему соединения приборов в цепь.


5.Результаты измерения напряжения запишите в таблицу.

№ опыта

Опыт 1 (U 1 )

Опыт 2 (U 2 )

Опыт 3 (U)

Показания вольтметра,

U, В

6. Вычислите сумму напряжений U 1 + U 2 на обеих спиралях и сравните её с напряжением U . Сделайте вывод.

Лабораторная работа № 7

Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления проводника

Цель работы : убедиться в том, что сила тока в проводнике прямо пропорциональна приложенному напряжению на его концах. Научиться измерять сопротивление проводника при помощи амперметра и вольтметра

Приборы и материалы : лабораторный источник питания, два резистора, вольтметр, амперметр, ключ, соединительные провода, реостат.

Правила техники безопасности.

Тренировочные задания и вопросы

1.От каких величин зависит сопротивление проводника?

2.Как вы понимаете утверждение о том, что удельное сопротивление меди равно 0,017 ?

3. Пользуясь графиком, определите

сопротивления провод ников 1 и 2.

Сделайте вывод о характере зависимости

между сопротив лением проводника и

углом наклона графика.

4.Как математически выразить закон Ома?

5.Какая зависимость существует между

силой тока и сопротивлением на участке цепи с постоянным напряжением?

6.Вольтметр, присоединенный к горящей электрической лампе накаливания, показывает 120 В, а амперметр – силу тока в лампе 0,08 А. Чему равно сопротивление этой лампы? Начертите схему электрической цепи?

7. При напряжении на концах проводника 12 В сила тока 2 А. Какова сила тока при напряжении 3 В?

Порядок выполнения работы

1.Соберите цепь, последовательно соединив источник питания, амперметр, резистор, реостат, ключ. Начертите схему этой цепи.


2. .При трех положениях реостата произвести измерения силы тока в цепи и напряжения на концах первого резистора.

3.При трех положениях реостатах произвести измерения силы тока и напряжения на концах другого резистора.

4.Результаты измерений занесите в таблицу.

№ опыта

Сила тока I, А

Напряжение U, В

Сопротивление R, Ом

Первый резистор

Второй резистор

5.Используя закон Ома, вычислите сопротивление проводника по данным каждого отдельного измерения. Результаты вычислений занесите в таблицу.

6. По данным измерений постройте график зависимости силы тока в проводнике от напряжения на его концах для двух резисторов.

7. Сделайте вывод о том, как зависит сила тока от приложенного напряжения и зависит ли сопротивление проводника от приложенного напряжения к проводнику и силы тока в нем

Лабораторная работа № 8

Регулирование силы тока реостатом

Цель работы : научиться включать в цепь реостат и регулировать с его помощью силу тока в цепи.

Приборы и материалы : лабораторный источник питания, ползунковый реостат, ключ, соединительные провода, амперметр.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения. Реостат нельзя полностью выводить из нагрузки, т.к. сопротивление его при этом становится равным нулю!

Тренировочные задания и вопросы

1.Каково назначение реостата в электрической цепи?

2.Почему в реостатах используют проволоку с большим удельным сопротивлением?

3.Как на схемах электрических цепей принято обозначать реостат?

4. Обмотка реостата, изготовленная из константановой проволоки длиной 16 м, имеет сопротивление 40 Ом. Вычислите сечение этой проволоки.

Порядок выполнения работы

1.Рассмотрите внимательно устройство реостата и установите, при каком положении ползунка сопротивление реостата наибольшее.

2.Составьте цепь, включив неё последовательно амперметр, реостат на полное сопротивление, источник питания и ключ. Начертите схему этой цепи


3.Замкните цепь и отметьте показания амперметра.

4.Уменьшайте сопротивление реостата, плавно и медленно передвигая его ползунок (но не до конца!). Наблюдайте за показаниями амперметра.

5.Результаты наблюдений занесите в таблицу.

Положение ползунка реостата

Полное сопротив- ление реостата

Сопротив- ление реостата уменьша- ется

Среднее положение ползунка реостата

Сопротивление реостат увеличивается

Сила тока

I , A

6. Сделайте вывод.

Лабораторная работа № 9

Измерение работы и мощности тока в электрического тока

Цель работы : научиться измерять работу и мощность электрического тока.

Приборы и материалы : лабораторный источник тока, электрическая лампа, вольтметр, амперметр, ключ, соединительные провода, секундомер.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения.

Тренировочные задания и вопросы

1.Как можно выразить работу через такие физические величины?

2.С помощью каких приборов можно измерить работу, совершаемую электрическим током?

3.Расчитайте мощность тока в

электродвигателе, используя

показания приборов, изображенных

на рисунке. Как она изменится при

перемещении ползунка реостата вправо?

4.Запишите формулы для расчета

мощности, в которые входят

а)сила тока и сопротивление;

б)напряжение и сопротивление.

5. В электрические цепи, изображенные на рисунке, включены одинаковые лампы, но в первой цепи - последовательно, а во второй - параллельно. При каком соединении этих ламп мощность тока в них будет больше? Напряжение на источнике тока в обеих цепях одинаково.


Порядок выполнения работы

1. Соберите цепь из источника питания, лампы, амперметра и ключа, соединив всё последовательно. Параллельно лампе подключите вольтметр. Начертите схему электрической цепи.


2.Измерьте силу тока и напряжение на лампочке. Запишите результаты измерений в таблицу с учетом погрешности.

3.Вычислите мощность тока в лампе. Результаты вычислений занесите в таблицу.

Сила тока

Напряжение

Мощность

Работа

Стоимость

I+ΔI, А

U+ΔU, В

P, Вт

А, Дж

Руб, коп

4.Измерьте время горения лампы а вашем опыте и вычислите работу тока в лампе. Результаты измерений и вычислений занесите в таблицу.

5.Расчитайте стоимость электроэнергии, израсходованной вами во время выполнения лабораторной работы.

6.Сделайте вывод.

Лабораторная работа № 10

Сборка электромагнита и испытание его действия

Цель работы : научиться собирать электромагнит из готовых деталей и изучить принцип его действия; проверить на опыте от чего зависит магнитное действие электромагнита.

Приборы и материалы : лабораторный источник тока, реостат, амперметр, ключ, соединительные провода, магнитная стрелка, детали для сборки электромагнита, железный гвоздь.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Оберегайте приборы от падения. Реостат нельзя полностью выводить из нагрузки, т.к. сопротивление его при этом становится равным нулю!

Тренировочные задания и вопросы

1.Вокруг чего существует электрическое поле?

2.Вокруг чего существует магнитное поле?

3.Как можно изменить магнитное поле катушки с током?

4.Что называют электромагнитом?

5.При замыкании ключа северный

полюс стрелки N повернулся к

ближнему к нему концу катушки.

Какой полюс у этого конца катушки

при замыкании цепи?

6. Как изменится действие

магнитного поля катушки на

стрелку при смещении

ползунка реостата влево? вправо?


Порядок выполнения работы

1. Составьте электрическую цепь из источника питания, катушки, реостата, амперметра и ключа, соединив их последовательно. Нарисуйте схему сборки цепи.

2. Замкните цепь и с помощью магнитной стрелки определите полюсы у катушки. Измерьте расстояние от катушки до стрелки ℓ 1 и силу тока I 1 в катушке. Результаты измерений запишите в таблицу 1

3. Отодвиньте магнитную стрелку вдоль оси катушки на такое расстояние ℓ 2 I 2 в катушке. Результаты измерений также запишите в таблицу 1.

Таблица 1

Катушка

без сердечника

ℓ 1 , см

I 1 , А

ℓ 2 , см

I 2 , А

4. Вставьте железный сердечник в катушку и пронаблюдайте действие электромагнита на стрелку. Измерьте расстояние ℓ 3 от катушки до стрелки и силу тока I 3 в катушке с сердечником. Результаты измерений запишите в таблицу 2.

5.Отодвиньте магнитную стрелку вдоль оси катушки с сердечником на такое расстояние ℓ 4 , на котором действие магнитного поля катушки на магнитную стрелку незначительно. Измерьте это расстояние и силу тока I 4 в катушке. Результаты измерений также запишите в таблицу 2.

Таблица 2

Катушка

с сердечником

ℓ 3 , см

I 3 , А

ℓ 4 , см

I 4 , А

6.Изменяйте с помощью реостата силу тока в цепи и наблюдайте действие

электромагнита на стрелку.

7.Из готовых деталей соберите электромагнит. Катушки соедините между собой последовательно так, чтобы на их концах получились разноименные полюсов. С помощью магнитной стрелки установите расположение полюсов электромагнита. Начертите схему электромагнита и покажите на ней направление тока в его катушках.

8.Сделайте соответствующие выводы.

Лабораторная работа № 11

Изучение электрического двигателя постоянного тока (на модели)

Цель работы : познакомиться на модели электродвигателя постоянного тока с его устройством и работой.

Приборы и материалы : модель электродвигателя, лабораторный источник питания, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Не прикасайтесь руками к вращающимся деталям электродвигателя.

Тренировочные задания и вопросы

1.На каком физическом явлении основано действие электрического двигателя?

2.Каковы преимущества электрических двигателей по сравнению с тепловыми?

3.Оъясните, почему вращается рамка с током, помещенная в магнитное поле.

4.Где используется электрические двигатели постоянного тока?

5.Рассмотрите модель электродвигателя. Укажите на рисунке основные его части.





Порядок выполнения работы

1.Соберите электрическую цепь, состоящую из источника тока, модели электродвигателя, ключа и реостата, соединив все последовательно. Начертите схему в тетради.

2. Приведите двигатель во вращение. Если двигатель не работает, найдите причины и устраните их.

3. Измените направление тока в цепи. Наблюдайте за вращением подвижной части электродвигателя. Сделайте вывод.

Лабораторная работа № 12

Измерение фокусного расстояния собирающей линзы. Получение изображений

Цель работы : научиться получать и исследовать различные изображения, даваемые линзой, в зависимости от положения предмета относительно линзы.

Приборы и материалы : собирающая линза, экран, электрическая лампочка, линейка, лабораторный источник питания, ключ, соединительные провода.

Правила техники безопасности.

На столе не должно быть никаких посторонних предметов. Внимание! Электрический ток! Изоляция проводников должна быть не нарушена. Не включайте цепь без разрешения учителя. Не трогайте линзу руками и не прикладывайте линзы к глазам.

Тренировочные задания и вопросы

1.Что называют: 1)оптическим центром линзы; 2)главной оптической осью; 3)главным фокусом линзы; 4)фокусным расстоянием?

2.Перечертите рисунок в тетрадь, покажите, на нем области тени и полутени.

3.Сравните оптические плотности граничащих сред в случаях, приведенных на рисунке.



4.Постройте изображения, даваемые линзами и охарактеризуйте изображения.




Порядок выполнения работы

1.Определите фокусное расстояние линзы. Для этого при помощи линзы получите на экране четкое изображение окна. Расстояние от линзы до изображения равно фокусному расстоянию. Определите оптическую силу линзы.

2.Поместите горящую электрическую лампочку на расстоянии d, большем, чем двойное фокусное расстояние линзы. Получите четкое изображение лампочки. Измерьте расстояние от линзы до изображения f, размеры лампочки и размеры ее изображения. Запишите результаты в таблицу.

Расстояние от предмета до линзы

Характеристика изображения

Размеры предмета

Размеры изображения

Расстояние от линзы до изображения

Действительное или мнимое

Увеличенное или уменьшенное

Обратное или прямое

d>2F

d=2F

3.Поместите лампочку на расстоянии, равном двойному фокусному, между фокусным и двойным фокусным и меньше фокусного. В каждом случае получите изображение и выполните те же измерения.

4.Для каждого случая постройте ход лучей в линзе.

d < F


F < d < 2 F


d =2F


d > 2 F


5.Вычислите увеличение линзы в каждом случае. Увеличение линзы равно отношению размера изображения H к размеру предмета h:

6.Сделайте соответствующие выводы.

Как были построены такие памятники как Стоунхедж, Великие Пирамиды Гизы, крепость Саксайуаман и другие древние сооружения? Многие ученые полагают, что в некоторых случаях только для того, чтобы доставить массивные глыбы на место строительства, потребовались бы десятки тысяч рабочих.

Однако невысокий человек из Латвии настаивает, что эти древние сооружения были построены намного меньшими усилиями, применяя строительный секрет, который утерян в веках. Он даже утверждает, что смог применить эту технику на практике, при строительстве таинственного Кораллового замка.

В 25 лет Эдвард Лиедскалныньш был помолвлен с девушкой, которая была на 10 лет моложе его - Агнесе Скафе, которую он ласково прозвал «милая шестнадцатилетка». К несчастью, за ночь до свадьбы невеста Эдварда изменила своё решение и бросила его. Как ни удивительно, но Лиедскалныньш решил построить действительно волшебный замок в память о своей потерянной любви.

После такого жестокого разочарования и перенесенного туберкулеза Лиедскалныньш эмигрировал из родной Латвии в США. Он обосновался во Флориде-Сити, где реализовал свой проект одного из наиболее впечатляющего и загадочного сооружения, которое когда-либо было построено одним человеком: Коралловый замок, или как его называет Лиедскалныньш - «Парк Каменных ворот».

Замок, сооружённый полностью из камней, которые Лиедскалныньш в одиночку перенес, обработал и установил - впечатляющая постройка, которая полностью построена из гигантских глыб, вес некоторых из них превышает 30 тонн. После 28-летней одинокой работы и использования простых инструментов, собственноручно изготовленных Эдвардом (блок и лебедка), Коралловый замок воплотился в реальность.

В 1936 г. Лиедскалныньш решил переместить структуру в соседний Хомстид и нанял грузовик для перевозки камней - единственный случай, когда он прибег к помощи. Постоянно стремясь к сохранению своего секрета, Лиедскалныньш настоял, чтобы водитель на ночь покинул свой грузовик, дабы он мог самостоятельно загрузить огромные глыбы. Водитель усомнился в его словах, но к следующему дню Лиедскалныньш, как и обещал, загрузил камни в большой трейлер для перевозки.

Человек-загадка

Сооружение Кораллового замка окутано тайнами. Каким образом один человек мог переместить огромные камни для строительства этого массивного сооружения? Хотя Лиедскалныньш никогда подробно не раскрывал свои строительные секреты, он оставил записки, которые наводят на мысли о серии экспериментов с использованием магнитных полей Земли. Неужели Лиедскалныньшу удалось открыть способ преодоления гравитации?

Лиедскалныньш уклонялся от прямых вопросов о строительстве Кораллового замка, но утверждал, что обладает техникой, которая когда-то была известна древним строителям - техника, подобная той, что использовалась для сооружения великих Египетских пирамид. Он частенько повторял, что эта методика очень простая, если знаешь её секрет.

Одна из наиболее потрясающих особенностей Кораллового замка - каменный блок весом в 9 тонн, который используется в качестве ворот на входе в замок. Лиедскалныньш установил этот огромный камень с такой точностью, что его можно открыть легким прикосновением. В 1986 г., 30 лет спустя после смерти Лиедскалныньша, воротам потребовался ремонт. Была задействована бригада из шести человек с краном, грузоподъёмностью в 20 тонн, чтобы переместить каменную глыбу. Но, не смотря на использование техники, этой команде не удалось установить ворота с прежней точностью.

Интерьер Кораллового замка сам по себе демонстрирует утонченную художественность, и чудо инженерной мысли. Замок официально считается историческим памятником, и был преобразован в открытый музей для всех, кто хочет им полюбоваться или желает внести свой вклад в раскрытие загадки о том, как жил и работал эксцентричный латыш. Коралловый сад декорирован столами и стульями, а солнечные часы точны до минуты - свидетельство удивительных способностей Лиедскалныньша.

Говорят, что его никогда не видели работающим в своём Коралловом замке, однако соседи сообщали, что работа в его мастерской сопровождалась странным пением поздними вечерами. Какого рода технологию использовал Лиедскалныньш, и почему он хотел сохранить в секрете такое удивительное открытие? Действительно ли он обладал теми же самыми строительными секретами, что использовались в древнем мире? Нам остается только догадываться, поскольку тайна строения была унесена им с собой.

Выбор редакции
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...

Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...

Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...

Лепить во сне пельмени означает наступление нужды, ухудшение самочувствия и погибшие надежды. Покупать пельмени в магазине – наяву...
Ну кто же не любит спелую сладкую черешню? Она является одним из самых долгожданных лакомств в летний сезон практически для каждого...
Сон, в котором видится дохлый пес, можно назвать пугающим и ужасающим. Но чтобы его истолковать и узнать, к чему снится мертвая собака,...
Квас из чистотела по рецепту Болотова собрал весьма противоречивые отзывы, но к ним мы вернемся чуть ниже. А сейчас поговорим о полезных...
В переводе с грузинского «сацебели» - просто «соус», причем название произносят с ударением на первый слог. Чаще его делают из орехов,...
Сыроедческие спагетти лишь условно можно назвать именем популярных макаронных изделий, так как живые спагетти похожи на оригинал только...