Чтение лекции по химии впо современная методика. А. Капустина методика преподавания химии курс лекций


Современная дидактика
школьной химии

Учебный план курса

№ газеты Учебный материал
17 Лекция № 1. Основные направления модернизации школьного химического образования. Эксперимент по переходу школы на 12-летнее обучение. Предпрофильная подготовка учащихся основной школы и профильное обучение учащихся в старшей школе. ЕГЭ как итоговая форма контроля качества знаний по химии выпускников средней школы. Федеральный компонент государственного образовательного стандарта по химии
18 Лекция № 2. Концентризм и пропедевтика в современном школьном химическом образовании. Концентрический подход к структурированию школьных курсов химии. Пропедевтические курсы химии
19 Лекция № 3. Анализ авторских курсов химии федерального перечня учебников по предмету. Курсы химии основной школы и предпрофильная подготовка учащихся. Курсы химии старшей ступени общего образования и профильное обучение учебной дисциплине. Линейное, линейно-концентрическое и концентрическое построение авторских курсов.
20 Лекция № 4. Процесс обучения химии. Сущность, цели, мотивы и этапы обучения химии. Принципы обучения химии. Развитие учащихся в процессе обучения химии. Формы и методы совершенствования творческих и исследовательских способностей учащихся при изучении химии
21 Лекция № 5. Методы обучения химии. Классификация методов обучения химии. Проблемное обучение химии. Химический эксперимент как метод обучения предмету. Исследовательские методы в обучении химии
22 Лекция № 6. Контроль и оценка качества знаний учащихся как форма руководства их учебной деятельностью. Виды контроля и их дидактические функции. Педагогическое тестирование в химии. Типология тестов. Единый государственный экзамен (ЕГЭ) по химии.
23 Лекция № 7. Личностно ориентированные технологии обучения химии. Технологии обучения в сотрудничестве. Проектное обучение. Портфолио как средство мониторинга успешности овладения учащимся учебного предмета
24 Лекция № 8. Формы организации обучения химии. Уроки химии, их структура и типология. Организация учебной деятельности учащихся на уроках химии. Элективные курсы, их типология и дидактическое предназначение. Другие формы организации учебной деятельности учащихся (кружки, олимпиады, научные общества, экскурсии)
Итоговая работа. Разработка урока в соответствии с предложенной концепцией. Краткий отчет о проведении итоговой работы, сопровождаемый справкой из учебного заведения, должен быть направлен в Педагогический университет не позднее 28 февраля 2008 г.

ЛЕКЦИЯ № 5
Методы обучения химии

Классификация методов обучения химии

Слово «метод» греческого происхождения и в переводе на русский язык означает «путь исследования, теория, учение». В процессе обучения метод выступает как упорядоченный способ взаимосвязанной деятельности учителя и учащихся по достижению определенных учебно-воспитательных целей.

Широко распространенным в дидактике является также понятие «прием обучения». Прием обучения – это составная часть или отдельная сторона метода обучения.

Единой универсальной классификации методов обучения дидактам и методистам создать не удалось.

Метод обучения предполагает прежде всего цель учителя и его деятельность с помощью имеющихся у него средств. В результате возникает цель ученика и его деятельность, которая осуществляется имеющимися у него средствами. Под влиянием этой деятельности возникает процесс усвоения учеником изучаемого содержания, достигается намеченная цель, или результат обучения. Этот результат служит критерием соответствия метода цели. Таким образом, любой метод обучения представляет собой систему целенаправленных действий учителя, организующих познавательную и практическую деятельность учащегося, обеспечивающую усвоение им содержания образования и тем самым достижение целей обучения .

Содержание образования, подлежащее усвоению, неоднородно. Оно включает компоненты (знания о мире, опыт репродуктивной деятельности, опыт творческой деятельности, опыт эмоционально-ценностного отношения к миру), каждый из которых имеет свою специфику. Многочисленные исследования психологов и опыт обучения в школе свидетельствуют о том, что каждому виду содержания соответствует определенный способ его усвоения . Рассмотрим каждый из них.

Известно, что усвоение первого компонента содержания образования – знаний о мире , в том числе о мире веществ, материалов и химических процессов, – требует прежде всего деятельного восприятия, которое первоначально протекает как чувственное восприятие: зрительное, осязательное, слуховое, вкусовое, тактильное. Воспринимая не только реальную действительность, но и символы, знаки, выражающие ее в форме химических понятий, законов, теорий, формул, уравнений химических реакций и т.п., обучаемый соотносит их с реальными объектами, перекодирует их на язык, соответствующий его опыту. Иными словами, химические знания ученик усваивает путем различных видов восприятия , осознания приобретенной информации о мире и запоминания ее.

Второй компонент содержания образования – опыт осуществления способов деятельности . Чтобы обеспечить этот вид усвоения, учитель организует репродуцирующую деятельность учащихся по образцу, правилу, алгоритму (упражнения, решение задач, составление уравнений химических реакций, выполнение лабораторных работ и т.д.).

Перечисленные способы деятельности, однако, не могут обеспечить освоение третьего компонента содержания школьного химического образования – опыта творческой деятельности . Для усвоения этого опыта необходимо самостоятельное решение учеником новых для него проблем.

Последний компонент содержания образования – опыт эмоционально-ценностного отношения к миру – предполагает формирование нормативных установок, оценочных суждений, отношения к веществам, материалам и реакциям, к деятельности по их познанию и безопасному применению и др.

Конкретные способы воспитания отношений могут быть различны. Так, можно поразить учащихся неожиданностью нового знания, эффектностью химического эксперимента; привлечь возможностью проявления собственных сил, самостоятельным достижением уникальных результатов, значимостью изучаемых объектов, парадоксальностью мысли и явлений. Во всех этих конкретных способах сказывается одна общая черта – они воздействуют на эмоции учащихся, формируют эмоционально окрашенное отношение к предмету изучения, вызывают переживания. Без учета эмоционального фактора ученика можно научить знаниям, навыкам, но вызвать интерес, постоянство положительного отношения к химии невозможно.

Классификация методов, в основу которой положены специфика содержания учебного материала и характер учебно-познавательной деятельности, включает несколько методов: объяснительно-uллюстративный метод, репродуктивный метод, метод проблемного изложения, частично-поисковый, или эвристический, метод, исследовательский метод.

Объяснительно-иллюстративный метод

Учитель организует передачу готовой информации и ее восприятие учащимися с помощью различных средств:

а) устное слово (объяснение, беседа, рассказ, лекция);

б) печатное слово (учебник, дополнительные пособия, хрестоматии, справочники, электронные источники информации, интернет-ресурсы);

в) наглядные пособия (использование мультимедийных средств, демонстрация опытов, таблиц, графиков, схем, показ слайдов, учебных кино-, теле-, видео- и диафильмов, натуральных объектов в классе и во время экскурсий);

г) практический показ способов деятельности (демонстрация образцов составления формул, монтажа прибора, способа решения задачи, составления плана, резюме, аннотации, примеров выполнения упражнений, оформления работы и т.д.).

Объяснение. Под объяснением следует понимать словесное истолкование принципов, закономерностей, существенных свойств изучаемого объекта, отдельных понятий, явлений, процессов. Оно используется при решении химических задач, раскрытии причин, механизмов химических реакций, технологических процессов. Применение этого метода требует:

– точного и четкого формулирования сути проблемы, задачи, вопроса;

– аргументации, доказательства последовательного раскрытия причинно-следственных связей;

– использование приемов сравнения, аналогии, обобщения;

– привлечения ярких, убедительных примеров из практики;

– безукоризненной логики изложения.

Беседа. Беседа – диалогический метод обучения, при котором учитель путем постановки тщательно продуманной системы вопросов подводит учеников к пониманию нового материала или проверяет усвоение ими уже изученного.

Для передачи новых знаний используется сообщающая беседа. Если беседа предшествует изучению нового материала, ее называют вводной или вступительной. Цель такой беседы – актуализировать имеющиеся у учащихся знания, вызвать положительную мотивацию, состояние готовности для усвоения нового. Закрепляющая беседа применяется после изучения нового материала с целью проверки степени его усвоения, систематизации, закрепления. В ходе беседы вопросы могут быть адресованы одному ученику (индивидуальная беседа ) или учащимся всего класса (фронтальная беседа ).

Успех проведения беседы во многом зависит от характера вопросов: они должны быть краткими, четкими, содержательными, сформулированными так, чтобы будить мысль ученика. Не следует ставить двойных, подсказывающих вопросов или вопросов, наталкивающих на угадывание ответа. Не следует также формулировать альтернативных вопросов, требующих однозначных ответов типа «да» или «нет».

К достоинствам беседы можно отнести то, что она:

– активизирует работу всех учащихся;

– позволяет использовать их опыт, знания, наблюдения;

– развивает внимание, речь, память, мышление;

– является средством диагностики уровня обученности.

Рассказ. Метод рассказа предполагает повествовательное изложение учебного материала описательного характера. К его использованию предъявляется ряд требований.

Рассказ должен:

– иметь ясное целеполагание;

– включать достаточное количество ярких, образных, убедительных примеров, достоверных фактов;

– обязательно быть эмоционально окрашенным;

– отражать элементы личной оценки и отношения учителя к излагаемым фактам, событиям, поступкам;

– сопровождаться записью на доске соответствующих формул, уравнений реакций, а также демонстрацией (средствами мультимедиа и др.) различных схем, таблиц, портретов ученых-химиков;

– иллюстрироваться соответствующим химическим экспериментом или его виртуальным аналогом, если того требуют правила техники безопасности или в школе отсутствуют возможности для его проведения.

Лекция. Лекция – монологический способ изложения объемного материала, необходимый в тех случаях, когда требуется обогатить содержание учебника новой, дополнительной информацией. Используется, как правило, в старших классах и занимает весь или почти весь урок. Преимущество лекции заключается в возможности обеспечить законченность, целостность, системность восприятия школьниками учебного материала с использованием внутри- и межпредметных связей.

Школьная лекция по химии так же, как и рассказ, должна сопровождаться опорным конспектом и соответствующими средствами наглядности, демонстрационным экспериментом и т.д.

Лекция (от лат. lectio – чтение) характеризуется строгостью изложения, предполагает конспектирование. К ней применимы те же требования, что и к методу объяснения, но добавляется еще ряд:

– лекция имеет структуру, она состоит из введения, основной части, заключения;

Эффективность лекции значительно повышается при использовании элементов дискуссии, риторических и проблемных вопросов, сопоставления различных точек зрения, выражения собственного отношения к обсуждаемой проблеме или позиции автора.

Объяснительно-иллюстративный метод – один из наиболее экономных способов передачи обобщенного и систематизированного опыта человечества.

В последние годы к источникам информации прибавился мощнейший информационный резервуар – Интернет, глобальная телекоммуникационная сеть, охватывающая все страны мира. Многие педагоги рассматривают дидактические свойства Интернета не только как глобальной информационной системы, но и как канала передачи информации посредством мультимедийных технологий. Мультимедийные технологии (ММТ) – информационные технологии, обеспечивающие работу с анимированной компьютерной графикой, текстом, речью и высококачественным звуком, неподвижными или видеоизображениями. Можно сказать, что мультимедиа – синтез трех стихий: информации цифрового характера (тексты, графика, анимация), аналоговой информации визуального отображения (видео, фотографии, картины и пр.) и аналоговой информации (речь, музыка, другие звуки). Использование ММТ способствует лучшему восприятию, осознанию и запоминанию материала, при этом, как утверждают психологи, активизируется правое полушарие мозга, отвечающее за ассоциативное мышление, интуицию, рождение новых идей.

Репродуктивный метод

Для приобретения учащимися навыков и умений учитель с помощью системы заданий организует деятельность школьников по применению полученных знаний. Учащиеся выполняют задания по образцу, показанному учителем: решают задачи, составляют формулы веществ и уравнения реакций, выполняют по инструкции лабораторные работы, работают с учебником и другими источниками информации, воспроизводят химические эксперименты. От сложности задания, от способностей ученика зависит количество упражнений, необходимых для формирования умения. Установлено, например, что усвоение новых химических понятий или формул веществ требует, чтобы они повторились около 20 раз на протяжении определенного срока. Воспроизведение и повторение способа деятельности по заданиям учителя является главным признаком метода, названного репродуктивным.

Химический эксперимент является одним из важнейших в обучении химии. Он делится на демонстрационный (учительский) эксперимент, лабораторные и практические работы (ученический эксперимент) и будет рассмотрен ниже.

Большую роль в осуществлении репродуктивных методов играет алгоритмизация. Ученику дается алгоритм, т.е. правила и порядок действий, в результате выполнения которых он получает определенный результат, усваивая при этом сами действия, их очередность. Алгоритмическое предписание может быть отнесено к содержанию учебного предмета (как определить состав химического соединения с помощью химического эксперимента), к содержанию учебной деятельности (как конспектировать различные источники химических знаний) или к содержанию способа мыслительной деятельности (как сравнивать различные химические объекты). Использование учащимися известного им алгоритма по заданию учителя характеризует прием репродуктивного метода.

Если учащимся поручают найти и составить алгоритм какой-либо деятельности самим, то это может потребовать и творческой деятельности. В этом случае используется исследовательский метод .

Проблемное обучение химии

Проблемное обучение – это тип развивающего обучения, в котором сочетаются:

Систематическая самостоятельная поисковая деятельность учащихся с усвоением ими готовых выводов науки (при этом система методов построена с учетом целеполагания и принципа проблемности );

Процесс взаимодействия преподавания и учения ориентирован на формирование познавательной самостоятельности учащихся, устойчивости мотивов учения и мыслительных (включая и творческие) способностей в ходе усвоения ими научных понятий и способов деятельности.

Цель проблемного обучения – усвоение не только результатов научного познания, системы знаний, но и самого пути, процесса получения этих результатов, формирование познавательной самостоятельности ученика и развитие его творческих способностей.

Разработчиками международного теста PISA-2003 выделяется шесть умений и навыков, необходимых для решения познавательных проблем. Ученик должен владеть навыками:

а) аналитических рассуждений;

б) рассуждений по аналогии;

в) комбинаторных рассуждений;

г) различать факты и мнения;

д) различать и соотносить причины и следствия;

е) логично излагать свое решение.

Основополагающее понятие проблемного обучения – проблемная ситуация. Это такая ситуация, при которой субъекту необходимо решить какие-то трудные для себя задачи, но ему не хватает данных и он должен сам их искать.

Условия возникновения проблемной ситуации

Проблемная ситуации возникает в случае осознания учащимися недостаточности прежних знаний для объяснения нового факта .

Например, при изучении гидролиза солей основанием для создания проблемной ситуации может послужить исследование среды раствора различного типа солей с помощью индикаторов.

Проблемные ситуации возникают при столкновении учащихся с необходимостью использовать ранее усвоенные знания в новых практических условиях . Например, известная учащимся качественная реакция на наличие двойной связи в молекулах алкенов и диенов оказывается эффективной и для определения тройной связи в алкинах.

Проблемная ситуация легко возникает в том случае, если имеется противоречие между теоретически возможным путем решения задачи и практической неосуществимостью избранного способа . Например, сформированное у учащихся обобщенное представление о качественном определении галогенид-ионов с помощью нитрата серебра не соблюдается при действии этого реактива на фторид-ионы (почему?), поэтому поиск решения возникшей проблемы приводит к растворимым солям кальция в качестве реактива на фторид-ион.

Проблемная ситуация возникает тогда, когда имеется противоречие между практически достигнутым результатом выполнения учебного задания и отсутствием у учащихся знаний для его теоретического обоснования . Например, известное учащимся из математики правило «от перемены мест слагаемых сумма не изменяется» не соблюдается в некоторых случаях в химии. Так, получение гидроксида алюминия согласно ионному уравнению

Al 3+ + 3OH – = Al(OH) 3

зависит от того, какой реактив приливается к избытку другого реактива. В случае добавления нескольких капель щелочи к раствору соли алюминия осадок образуется и сохраняется. Если несколько капель раствора соли алюминия добавить к избытку щелочи, то образующийся вначале осадок сразу же растворяется. Почему? Решение возникшей проблемы позволит перейти к рассмотрению амфотерности.

Д.З.Кнебельман называет следующие особенности проблемных задач , вопросов.

Задача должна вызывать интерес своей необычностью , неожиданностью, нестандартностью. Информация особенно привлекает учащихся, если она содержит противоречивость , хотя бы кажущуюся. Проблемное задание должно вызвать удивление, создать эмоциональный фон. Например, решение проблемы, которая объясняет двойственное положение водорода в периодической системе (почему у этого единственного элемента в периодической системе – две клеточки в двух резко противоположных по свойствам группах элементов – щелочных металлов и галогенов?).

Проблемные задачи обязательно должны содержать посильное познавательное или техническое затруднение. Казалось бы, видно решение, но «мешает» досадное затруднение, что неизбежно вызывает всплеск мыслительной активности. Например, изготовление шаростержневых или масштабных моделей молекул веществ, отражающих истинное положение их атомов в пространстве.

Проблемное задание предусматривает элементы исследования, поиск различных способов его выполнения, их сравнение. Например, исследование различных факторов, ускоряющих или замедляющих коррозию металлов.

Логика решения учебной проблемы:

1) анализ проблемной ситуации;

2) осознание сущности затруднения – видение проблемы;

3) словесная формулировка проблемы;

4) локализация (ограничение) неизвестного;

5) определение возможных условий для успешного решения;

6) составление плана решения проблемы (план обязательно включает в себя выбор вариантов решения);

7) выдвижение предположения и обоснование гипотезы (возникает в результате «мысленного забегания вперед»);

8) доказательство гипотезы (осуществляется путем выведения из гипотезы следствий, которые проверяются);

9) проверка решения проблемы (сопоставление цели, требования задачи и полученного результата, соответствие теоретических выводов практике);

10) повторение и анализ процесса решения.

При проблемном обучении не исключается объяснение учителя и выполнение учащимися задач и заданий, требующих репродуктивной деятельности. Но принцип поисковой деятельности доминирует.

Метод проблемного изложения

Сущность метода состоит в том, что учитель в процессе изучения нового материала показывает образец научного поиска. Он создает проблемную ситуацию, анализирует ее и затем выполняет все этапы решения проблемы.

Учащиеся следят за логикой решения, контролируют правдоподобность предложенных гипотез, корректность выводов, убедительность доказательств. Непосредственный результат проблемного изложения – усвоение способа и логики решения данной проблемы или данного типа проблем, но еще без умения применять их самостоятельно. Поэтому для проблемного изложения учителем могут быть отобраны проблемы более сложные, чем те, которые посильны самостоятельному решению учащихся. Например, решение проблемы двойственного положения водорода в периодической системе, выявление философских основ общности периодического закона Д.И.Менделеева и теории строения А.М.Бутлерова, доказательств относительности истины на типологии химических связей, теории кислот и оснований.

Частично-поисковый, или эвристический, метод

Метод, при котором учитель организует участие школьников в выполнении отдельных этапов решения проблем, назван частично-поисковым.

Эвристическая беседа – это взаимосвязанная серия вопросов, большая или меньшая часть которых является небольшими проблемами, в совокупности ведущими к решению поставленной учителем проблемы.

Для постепенного приближения учащихся к самостоятельному решению проблем их необходимо предварительно учить выполнению отдельных шагов этого решения, отдельных этапов исследования, которые определяет учитель.

Например, при изучении циклоалканов учитель создает проблемную ситуацию: чем объяснить, что вещество состава С 5 Н 10 , которое должно быть непредельным и, следовательно, обесцвечивать раствор бромной воды, на практике не обесцвечивает его? Учащиеся высказывают предположение, что, по всей видимости, это вещество – предельный углеводород. Но у предельных углеводородов в составе молекулы должно быть на 2 атома водорода больше. Следовательно, этот углеводород должен иметь отличное от алканов строение. Учащимся предлагается вывести структурную формулу необычного углеводорода.

Сформулируем проблемные вопросы, которые создают соответствующие ситуации при изучении периодического закона Д.И.Менделеева в старших классах средней школы, инициируют эвристические беседы.

1) Все ученые, которые занимались поисками естественной классификации элементов, отталкивались от одних и тех же предпосылок. Почему же только Д.И.Менделееву «покорился» периодический закон?

2) В 1906 г. Нобелевский комитет рассматривал две кандидатуры на соискание Нобелевской премии: Анри Муассана («За какие заслуги?» – задает дополнительный вопрос учитель) и Д.И.Менделеева. Кому была вручена Нобелевская премия? Почему?

3) В 1882 г. Лондонское королевское общество присудило Д.И.Менделееву медаль Деви «за открытие периодических отношений атомных весов», а в 1887 г. оно вручает такую же медаль Д.Ньюлендсу «за открытие периодического закона». Чем объяснить такую нелогичность?

4) Философы называют открытие Менделеева «научным подвигом». Подвиг – это смертельный риск во имя великой цели. Как и чем рисковал Менделеев?

Химический эксперимент
как метод обучения предмету

Демонстрационный эксперимент иногда называют учительским, т.к. он проводится учителем в классе (кабинете или лаборатории химии). Однако это не совсем точно, ибо демонстрационный эксперимент может проводиться также лаборантом или 1–3 учащимися под руководством учителя.

Для такого эксперимента используется специальное оборудование, которое не применяется в ученическом эксперименте: демонстрационный штатив с пробирками, кодоскоп (в качестве реакторов в этом случае наиболее употребительны чашки Петри), графопроектор (в качестве реакторов в этом случае наиболее употребительны стеклянные кюветы), виртуальный эксперимент, который демонстрируется с помощью мультимедийной установки, компьютера, телевизора и видеомагнитофона.

Иногда в школе отсутствуют данные технические средства, и учитель пытается восполнить их недостаток собственной смекалкой. Например, при отсутствии кодоскопа и возможности показать взаимодействие натрия с водой в чашках Петри учителя нередко демонстрируют эту реакцию эффектно и просто. На демонстрационный столик ставится кристаллизатор, в который наливается вода, добавляется фенолфталеин и опускается небольшой кусочек натрия. Процесс демонстрируется посредством большого зеркала, которое учитель держит перед собой.

Учительская смекалка потребуется также для демонстрации моделей технологических процессов, которые невозможно повторить в школьных условиях или показать с помощью мультимедийных средств. Модель «кипящего слоя» учитель может продемонстрировать на простейшей установке: на рамку, затянутую марлей и помещенную на кольцо лабораторного штатива, насыпается горка манной крупы, а снизу подается поток воздуха из волейбольной камеры или воздушного шара.

Лабораторные и практические работы или ученический эксперимент играют важнейшую роль в обучении химии.

Отличие лабораторных работ от практических заключается прежде всего в их дидактических целях: лабораторные работы проводятся как экспериментальный фрагмент урока при изучении нового материала, а практические – по окончании изучения темы как средство контроля сформированности практических умений и навыков. Свое название лабораторный опыт получил от лат. laborare , что значит «работать». «Химии, – подчеркивал М.В.Ломоносов, – никоим образом научиться невозможно, не видав самой практики и не принимаясь за химические операции». Лабораторные работы – это метод обучения, при котором учащиеся под руководством учителя и по заранее намеченному плану выполняют опыты, определенные практические задания, используя приборы и инструменты, в ходе чего происходит усвоение знаний и опыта деятельности.

Проведение лабораторных работ ведет к формированию умений и навыков, которые можно объединить в три группы: лабораторные навыки и умения, общие организационно-трудовые умения, умения производить фиксацию проделанных опытов.

В число лабораторных умений и навыков включаются: умение проводить несложные химические эксперименты с соблюдением правил техники безопасности, наблюдать за веществами и химическими реакциями.

К организационно-трудовым умениям относятся: соблюдение чистоты, порядка на рабочем столе, соблюдение правил техники безопасности, экономное расходование средств, времени и сил, умение работать в команде.

К умениям фиксировать опыт относятся: зарисовка прибора, запись наблюдений, уравнений реакций и выводов по ходу и итогам лабораторного опыта.

У российских учителей химии наиболее распространена следующая форма фиксации лабораторных и практических работ.

Например, при изучении теории электролитической диссоциации проводится лабораторная работа по исследованию свойств сильных и слабых электролитов на примере диссоциации соляной и уксусной кислот. Уксусная кислота обладает резким неприятным запахом, поэтому эксперимент рационально проводить капельным методом. В случае отсутствия специальной посуды в качестве реакторов можно использовать лунки, вырезанные из пластинок для таблеток. По инструкции учителя учащиеся помещают в две лунки соответственно по одной капле растворов концентрированной соляной кислоты и столового уксуса в каждую. Фиксируется наличие запаха из обеих лунок. Затем в каждую приливается по три-четыре капли воды. Фиксируется наличие запаха у разбавленного раствора уксусной кислоты и отсутствие его у раствора соляной (таблица).

Таблица

Что делал
(название опыта)
Что наблюдал
(рисунок и фиксация наблюдений)
Выводы
и уравнения реакций
Сильные и слабые электролиты До разбавления оба раствора имели резкий запах.

После разбавления запах у раствора уксусной кислоты сохранился, а у соляной исчез

1. Соляная кислота – сильная кислота, она диссоцирует необратимо:HCl = H + + Cl – .

2. Уксусная кислота – слабая кислота, поэтому диссоциирует обратимо:

CH 3 COOH CH 3 COO – + H + .

3. Свойства ионов отличаются от свойств молекул, из которых они образовались. Поэтому запах соляной кислоты исчез при ее разбавлении

Для формирования экспериментальных навыков учитель должен выполнить следующие методические приемы:

– сформулировать цели и задачи лабораторной работы;

– разъяснить порядок выполнения операций, показать наиболее сложные приемы, зарисовать схемы действия;

– предупредить о возможных ошибках и их последствиях;

– наблюдать и контролировать выполнение работы;

– подвеcти итоги работы.

Необходимо уделить внимание совершенствованию способов инструктажа учащихся перед выполнением лабораторных работ. Помимо устных объяснений и показа приемов работы, для этой цели используются письменные инструкции, схемы, демонстрация кинофрагментов, алгоритмические предписания.

Исследовательский метод в обучении химии

Наиболее ярко этот метод реализуется в проектной деятельности учащихся. Проект – это творческая (исследовательская) итоговая работа. Внедрение в школьную практику проектной деятельности преследует цель – развитие интеллектуальных способностей учащихся через усвоение алгоритма научного исследования и формирование опыта выполнения исследовательского проекта.

Достижение этой цели осуществляется в результате решения следующих дидактических задач:

– сформировать мотивы реферативно-исследовательской деятельности;

– обучить алгоритму научного исследования;

– сформировать опыт выполнения исследовательского проекта;

– обеспечить участие школьников в различных формах представления исследовательских работ;

– организовать педагогическую поддержку исследовательской деятельности и изобретательского уровня разработок учащихся.

Такая деятельность носит личностно ориентированный характер, и мотивами выполнения учащимися исследовательских проектов служат: познавательный интерес, ориентация на будущую профессию и высшее политехническое образование, удовлетворение от процесса работы, желание самоутвердиться как личность, престижность, желание получить награду, возможность поступить в вуз и др.

Тематика исследовательских работ по химии может быть различной, в частности:

1) химический анализ объектов окружающей среды: анализ кислотности почв, продуктов питания, природных вод; определение жесткости воды из разных источников и др. (например, «Определение жира в семенах масличных культур», «Определение качества мыла по его щелочности», «Анализ качества пищевых продуктов»);

2) изучение влияние различных факторов на химический состав некоторых биологических жидкостей (кожного экскрета, слюны и др.);

3) исследование влияния химических веществ на биологические объекты: прорастание, рост, развитие растений, поведение низших животных (эвглены, инфузории, гидры и др.).

4) изучение влияния различных условий на протекание химических реакций (особенно ферментативный катализ).

Л и т е р а т у р а

Бабанский Ю.К . Как оптимизировать процесс обучения. М., 1987; Дидактика средней школы. Под ред. М.Н.Скаткина. М., 1982; Дьюи Д . Психология и педагогика мышления. М., 1999;
Калмыкова З.И. Психологические принципы развивающего обучения. М., 1979; Кларин М.В . Инновации в мировой педагогике: обучение на основе исследования, игр и дискуссии. Рига, 1998; Лернер И.Я. Дидактические основы методов обучения. М., 1981; Махмутов М.И . Организация проблемного обучения в школе. М., 1977; Основы дидактики. Под ред. Б.П.Есипова, М., 1967; Оконь В . Основы проблемного обучения. М., 1968; Педагогика: Учебное пособие для студентов педагогических институтов. Под ред. Ю.К.Бабанского. М., 1988; Реан А.А., Бордовская Н.В.,
Розум С.Н
. Психология и педагогика. СПб., 2002; Совершенствование содержания образования в школе. Под ред. И.Д.Зверева, М.П.Кашина. М., 1985; Харламов И.Ф . Педагогика. М., 2003; Шелпакова Н.А. и др . Химический эксперимент в школе и дома. Тюмень: ТГУ, 2000.

УЧЕБНЫЙ ПЛАН КУРСА

№ газеты Учебный материал
17 Лекция № 1. Содержание школьного курса химии и его вариативность. Пропедевтический курс химии. Kурс химии основной школы. Kурс химии средней школы. (Г.М.Чернобельская, доктор педагогических наук, профессор)
18 Лекция № 2. Предпрофильная подготовка учащихся основной школы по химии. Сущность, цели и задачи. Предпрофильные элективные курсы. Методические рекомендации по их разработке. (Е.Я.Аршанский, доктор педагогических наук, доцент)
19 Лекция № 3. Профильное обучение химии на старшей ступени общего образования. Единый методический подход к структурированию содержания в классах разного профиля. Вариативные компоненты содержания. (Е.Я.Аршанский)
20 Лекция № 4. Индивидуализированные технологии обучения химии. Основные требования построения технологий индивидуализированного обучения (ТИО). Организация самостоятельной работы учащихся на различных этапах урока в системе ТИО. Примеры современных ТИО. (Т.А.Боровских, кандидат педагогических наук, доцент)
21 Лекция № 5. Модульная технология обучения и ее использование на уроках химии. Основы модульной технологии. Методики конструирования модулей и модульные программы по химии. Рекомендации по использованию технологии на уроках химии. (П.И.Беспалов, кандидат педагогических наук, доцент)
22 Лекция № 6. Химический эксперимент в современной школе. Виды эксперимента. Функции химического эксперимента. Проблемный эксперимент с использованием современных технических средств обучения. (П.И.Беспалов)
23 Лекция № 7. Экологическая компонента в школьном курсе химии. Kритерии отбора содержания. Экологоориентированный химический эксперимент. Учебно-исследовательские экологические проекты. Задачи с экологическим содержанием. (В.М.Назаренко, доктор педагогических наук, профессор)
24 Лекция № 8. Kонтроль результатов обучения химии. Формы, виды и методы контроля. Тестовый контроль знаний по химии. (М.Д.Трухина, кандидат педагогических наук, доцент)

Итоговая работа. Разработка урока в соответствии с предложенной концепцией. Kраткий отчет о проведении итоговой работы, сопровождаемый справкой из учебного заведения, должен быть направлен в Педагогический университет не позднее
28 февраля 2007 г.

Т.А.БОРОВСКИХ

ЛЕКЦИЯ № 4
Индивидуализированные технологии
обучения химии

Боровских Татьяна Анатольевна – кандидат педагогических наук, доцент МПГУ, автор методических пособий для учителей химии, работающих по разным учебникам. Научные интересы – индивидуальзация обучения химии учащихся основной и полной средней школы.

План лекции

Основные требования к технологиям индивидуализированного обучения.

Построение системы уроков в ТИО.

Программированное обучение химии.

Технология уровневого обучения.

Технология проблемно-модульного обучения.

Технология проектного обучения.

ВВЕДЕНИЕ

В современной педагогике активно разрабатывается идея личностно-ориентированного обучения. Требование учитывать индивидуальные особенности ребенка в процессе обучения - давняя традиция. Однако традиционная педагогика с ее жесткой школьной системой, учебным планом, одинаковым для всех учащихся, не имеет возможности в полной мере осуществлять индивидуальный подход. Отсюда и слабая учебная мотивация, пассивность учащихся, случайность выбора ими профессии и т.д. В связи с этим необходимо искать пути перестройки учебного процесса, направив его на достижение всеми учащимися базового уровня образования, а заинтересованными учащимися – более высоких результатов.

Что же такое «индивидуализация обучения»? Часто понятия «индивидуализация», «индивидуальный подход» и «дифференциация» употребляются как синонимы.

Под индивидуализацией обучения понимают учет в процессе обучения индивидуальных особенностей учащихся во всех его формах и методах, независимо от того, какие особенности и в какой мере учитываются.

Дифференциация обучения – это объединение учащихся в группы на основании каких-либо особенностей; обучение в этом случае происходит по различным учебным планам и программам.

Индивидуальный подход – это принцип обучения, а индивидуализация обучения – это способ реализации данного принципа, который имеет свои формы и методы.

Индивидуализация обучения – это способ организации учебного процесса с учетом индивидуальных особенностей каждого ученика. Такой способ позволяет максимально реализовать потенциальные возможности учащихся, предполагает поощрение индивидуальности, а также признает существование индивидуально-специфических форм усвоения учебного материала.

В реальной школьной практике индивидуализация всегда относительна. Из-за большой наполняемости классов учащихся, обладающих примерно одинаковыми особенностями, объединяют в группы, при этом учитывают лишь такие особенности, которые важны с точки зрения учения (например, умственные способности, одаренность, состояние здоровья и т.п.). Чаще всего индивидуализация реализуется не во всем объеме учебной деятельности, а в каком-либо виде учебной работы и интегрирована с неиндивидуализированной работой.

Для осуществления эффективного образовательного процесса необходима современная педагогическая технология индивидуализированного обучения (ТИО), в рамках которой индивидуальный подход и индивидуальная форма обучения являются приоритетными.

ОСНОВНЫЕ ТРЕБОВАНИЯ К ТЕХНОЛОГИЯМ
ИНДИВИДУАЛИЗИРОВАННОГО ОБУЧЕНИЯ

1. Основная цель любой педагогической технологии – развитие ребенка. Обучение применительно к каждому учащемуся может быть развивающим лишь в том случае, если оно будет приспособлено к уровню развития данного ученика, что достигается с помощью индивидуализации учебной работы.

2. Чтобы исходить из достигнутого уровня развития, необходимо выявить этот уровень у каждого учащегося. Под уровнем развития учащегося следует понимать обучаемость (предпосылки к учению), обученность (приобретенные знания) и скорость усвоения (показатель темпа запоминания и обобщения). Критерием усвоения служит количество выполненных заданий, необходимых для возникновения устойчивых навыков.

3. Развитие умственных способностей достигается с помощью специальных средств обучения - развивающих заданий. Задания оптимальной трудности формируют рациональные умения умственного труда.

4. Эффективность обучения зависит не только от характера предъявленных заданий, но и от активности учащегося. Активность как состояние учащегося - предпосылка всей его учебной деятельности, а значит, и общего умственного развития.

5. Важнейшим фактором, стимулирующим ученика к учебной деятельности, является учебная мотивация, которая определяется как направленность учащегося к различным сторонам учебной деятельности.

Создавая систему ТИО, следует придерживаться определенных этапов. Начинать следует с представления своего учебного курса как системы, т.е. провести первичное структурирование содержания. С этой целью необходимо выделить стержневые линии целого курса и затем по каждой линии для каждого класса определить то содержание, которое будет обеспечивать развитие представлений по рассматриваемой линии.

Приведем два примера.

С т е р ж н е в а я л и н и я – основные химические понятия. Содержание: 8-й класс – простые и сложные вещества, валентность, основные классы неорганических соединений; 9-й класс – электролит, степень окисления, группы сходных элементов.

С т е р ж н е в а я л и н и я – химические реакции. Содержание: 8-й класс – признаки и условия химических реакций, типы реакций, составление уравнений реакций на основе валентности атомов химических элементов, реакционная способность веществ; 9-й класс – составление уравнений реакций на основе теории электролитической диссоциации, окислительно-восстановительные реакции.

Программа, учитывающая индивидуальные различия обучающихся, всегда состоит из комплексной дидактической цели и совокупности дифференцированных учебных занятий. Такая программа направлена на овладение новым содержанием и формирование новых умений, а также на закрепление ранее сформированных знаний и умений.

Для создания программы в системе ТИО необходимо выбрать крупную тему, выделить в ней теоретическую и практическую части и распределить время, отведенное на изучение. Целесообразно теоретическую и практическую части изучать раздельно. Это позволит осваивать теоретический материал темы быстро и создавать целостное представление о теме. Практические задания при этом выполняются на базовом уровне, чтобы лучше усвоить основные понятия и общие законы. Освоение практической части позволяет осуществлять развитие индивидуальных способностей детей на прикладном уровне.

В начале работы учащимся должна быть предложена блок-схема, где выделены базис (понятия, законы, формулы, свойства, единицы величин и т.д.), основные умения ученика на первом уровне, пути перехода на более высокие уровни, закладывающие основу самостоятельного развития каждого ученика по его желанию.

ПОСТРОЕНИЕ СИСТЕМЫ УРОКОВ В ТИО

Элементы индивидуализированного обучения должны просматриваться на каждом уроке и на всех его этапах. Урок изучения нового материала можно разделить на три основные части.

1-я ч а с т ь. П р е д ъ я в л е н и е н о в о г о м а т е р и а л а. Перед учащимися на первом этапе ставится задача – овладеть определенными знаниями. Для усиления индивидуализации восприятия можно использовать различные приемы. Например, листки контроля за работой учащихся во время объяснения нового материала, в которых школьники отвечают на вопросы, поставленные перед уроком. Листки с ответами учащиеся сдают на проверку в конце урока. Уровень трудности и количество вопросов определяются в соответствии с индивидуальными особенностями ребят. В качестве примера приведем фрагмент листка для контроля деятельности учащихся на лекции при изучении темы «Комплексные соединения».

Листок контроля по теме
«Комплексные соединения»

1. Комплексным называется соединение ……..... ......................... .

2. Комплексообразователем называется ………... ......................... .

3. Лигандами называются ……………………… ……………………….. .

4. Внутренняя сфера – это ………………………… ……………………. .

5. Координационное число – это ………………… ……………...……… .

Определить координационное число (КЧ):

1) + , КЧ = … ;

2) 0 , КЧ = … ;

3) 0 , КЧ = … ;

4) 3– , КЧ = … .

6. Внешняя сфера – это ……………………………… ………………… .

7. Ионы внешней и внутренней сфер связаны между собой ………. связью; их диссоциация происходит ……………. . Например, ……………………… .

8. Лиганды связаны с комплексообразователем ………………………… связью.

Записать уравнение диссоциации комплексной соли:

K 4 = ……………………………………………… .

9. Вычислить заряды комплексных ионов, образованных хромом(III):

1) ………………….. ;

2) ………………….. .

10. Определить степень окисления комплексообразователя:

1) 4– ………………….. ;

2) + ………………….. ;

3) – ………………….. .

Другой пример показывает применение так называемых «карточек-путеводителей» на уроке «Кислоты как электролиты». Работая с карточками, учащиеся делают себе пометки в тетрадях. (Работу можно проводить в группах.)

Карточка-путеводитель

2-я ч а с т ь. О с м ы с л е н и е н о в о г о м а т е р и а л а. Здесь учащиеся готовятся к самостоятельному решению проблем посредством учебной беседы, в ходе которой учеников провоцируют на выдвижение гипотез и демонстрацию своих знаний. В беседе ученику дается возможность свободно выразить свои мысли, связанные с его личным опытом и интересами. Зачастую сама тема беседы вырастает из размышлений учащихся.

3-я ч а с т ь. Р е з ю м е. На этом этапе урока задания должны носить исследовательский характер. На уроке «Кислоты как электролиты» учащимся можно показать демонстрационный опыт «Растворение меди в азотной кислоте». Потом рассмотреть проблему: действительно ли металлы, стоящие в ряду напряжений после водорода, не взаимодействуют с кислотами. Можно предложить учащимся выполнить лабораторные опыты, например: «Взаимодействие магния с раствором хлорида алюминия» и «Отношение магния к холодной воде». После выполнения эксперимента в беседе с учителем учащиеся узнают, что свойствами кислот могут обладать и растворы некоторых солей.

Проведенные опыты заставляют задуматься и дают возможность осуществить плавный переход к изучению последующих разделов. Таким образом, третий этап урока способствует творческому применению знаний.

Урок систематизации знаний эффективен при использовании методики свободного выбора заданий разного уровня трудности. Здесь у учащихся формируются навыки и умения по данной теме. Предваряет работу входной контроль – небольшая самостоятельная работа, позволяющая установить наличие у учащихся необходимых для успешной работы знаний и умений. По результатам проверки учащимся предлагается (или они выбирают) определенный уровень трудности задания. После выполнения задания следует проверка правильности его выполнения. Проверка осуществляется либо учителем, либо учащимся по шаблонам. Если задание выполнено без ошибок, то учащийся переходит на новый, повышенный уровень. Если при выполнении допущены ошибки, то происходит коррекция знаний под руководством учителя или под руководством более сильного учащегося. Таким образом, в любой ТИО обязательным элементом является петля обратной связи: предъявление знаний – освоение знаний и умений – контроль результатов – коррекция – дополнительный контроль результатов – предъявление новых знаний.

Завершается урок систематизации знаний выходным контролем – небольшой самостоятельной работой, позволяющей определить уровень сформированности умений и знаний учащихся.

Урок контроля усвоения пройденного материала – сугубо индивидуализированная форма обучения. На данном уроке действует свобода выбора, т.е. ученик сам выбирает задания любого уровня по своим способностям, знаниям и умениям, интересам и т.д.

К настоящему моменту хорошо разработан и успешно применяется в школьной практике целый ряд ТИО. Рассмотрим некоторые из них.

ПРОГРАММИРОВАННОЕ ОБУЧЕНИЕ ХИМИИ

Программированное обучение можно охарактеризовать как вид самостоятельной работы учащихся, управляемой учителем при помощи программированных пособий.

Методика разработки обучающей программы складывается из нескольких этапов.

1-й э т а п – отбор учебной информации.

2-й э т а п – построение логической последовательности изложения материала. Материал разбивают на отдельные порции. Каждая порция содержит небольшую часть информации, завершенной по смыслу. Для самопроверки усвоения к каждой порции информации подбирают вопросы, экспериментальные и расчетные задачи, упражнения и пр.

3-й э т а п – установление обратной связи. Здесь применимы различные виды структур обучающей программы - линейные, разветвленные, комбинированные. Каждая из этих структур имеет свойственную ей модель шага обучающей программы. Одна из линейных программ приведена на схеме 1.

Схема 1

Модель шага линейной программы

ИК 1 – первый информационный кадр, содержит порцию информации, которую ученик должен усвоить;

OK 1 – первый операционный кадр - задания, выполнение которых обеспечивает усвоение предложенной информации;

OC 1 – первый кадр обратной связи – указания, с помощью которых обучаемый может себя проверить (это может быть готовый ответ, с которым ученик сравнивает свой ответ);

KK 1 - контрольный кадр, служит для осуществления так называемой внешней обратной связи: между учеником и учителем (эта связь может осуществляться с помощью компьютера или другого технического устройства, а также без него; в случае затруднений ученик имеет возможность вернуться к исходной информации и изучить ее заново).

В линейной программе материал излагается последовательно. Мелкие порции информации почти исключают ошибки обучаемых. Многократное повторение материала в разных формах обеспечивает прочность его усвоения. Однако линейная программа не учитывает индивидуальные особенности усвоения. Разница в темпе движения по программе возникает лишь за счет того, насколько быстро учащиеся могут читать и воспринимать прочитанное.

Разветвленная программа учитывает индивидуальность обучаемых. Особенность разветвленной программы в том, что учащиеся не отвечают на вопросы сами, а выбирают ответ из серии предложенных (О 1a –О 1д, схема 2).

Схема 2

Модель шага разветвленной программы

Примечание . В скобках указана страница учебника с материалом для самопроверки.

Выбрав один ответ, они переходят на страницу, предпи санную программой, и там находят материал для самопроверки и дальнейшие указания к работе с программой. В качестве примера разветвленной программы можно привести пособие «Химический тренажер» (Й.Нентвиг, М.Кройдер, К.Моргенштерн. М.: Мир, 1986).

Разветвленная программа также не лишена недостатков. Во-первых, учащийся при работе вынужден все время листать страницы, передвигаясь от одной ссылки к другой. Это рассеивает внимание и противоречит выработанному годами стереотипу в работе с книгой. Во-вторых, если ученику понадобится что-либо повторить по такому пособию, то он будет не в состоянии найти нужное место и должен снова проделать весь путь по программе, прежде чем найдет нужную страницу.

Комбинированная программа более, чем две первые, удобна и эффективна в работе. Особенность ее в том, что информация подается линейно, а в кадре обратной связи имеются дополнительные разъяснения и ссылки на другой материал (элементы разветвленной программы). Такая программа читается как обычная книга, но в ней чаще, чем в непрограммированном учебнике, встречаются вопросы, заставляющие читателя вдумываться в текст, задания на формирование учебных умений и приемов мышления, а также для закрепления знаний. Ответы для самопроверки помещены в конце глав. Кроме того, с ней можно работать, используя навыки чтения обычной книги, которые уже прочно закреплены у учащихся. В качестве примера комбинированной программы можно рассматривать учебник «Химия» Г.М.Чернобельской и И.Н.Черткова (М., 1991).

После получения вводного инструктажа учащиеся работают с пособием самостоятельно. Учитель не должен отрывать учащихся от работы и может проводить лишь индивидуальные консультации по их просьбе. Оптимальное время для работы с программированным пособием, как показал эксперимент, 20-25 мин. Программированный контроль отнимает всего 5-10 мин, а проверка в присутствии учащихся длится не более 3-4 мин. При этом варианты заданий остаются на руках у учащихся, для того чтобы они могли проанализировать свои ошибки. Такой контроль может проводиться почти на каждом уроке по разным темам.

Программированное обучение особенно хорошо себя зарекомендовало в самостоятельной работе учащихся дома.

ТЕХНОЛОГИЯ УРОВНЕВОГО ОБУЧЕНИЯ

Целью технологии уровневого обучения является обеспечение усвоения учебного материала каждым учеником в зоне его ближайшего развития на основе особенностей его субъективного опыта. В структуре уровневой дифференциации обычно выделяют три уровня: базовый (минимальный), программный и усложненный (продвинутый). Подготовка учебного материала предусматривает выделение в содержании и в планируемых результатах обучения нескольких уровней и подготовку технологической карты для учащихся, в которой по каждому элементу знания указаны уровни его усвоения: 1) знание (запомнил, воспроизвел, узнал); 2) понимание (объяснил, проиллюстрировал); 3) применение (по образцу, в сходной или измененной ситуации); 4) обобщение, систематизация (выделил части из целого, образовал новое целое); 5) оценка (определил ценность и значение объекта изучения). Для каждой единицы содержания в технологической карте закладываются показатели ее усвоения, представленные в виде контрольных или тестовых заданий. Задания первого уровня составляются таким образом, чтобы учащиеся могли их выполнить, используя образец, предложенный либо при выполнении данного задания, либо на предыдущем уроке.

П о р я д о к в ы п о л н е н и я о п е р а ц и й (алгоритм)
при составлении уравнений реакций щелочей с кислотными оксидами

(Для реакции NaOH c CO 2)

1. Записать формулы исходных веществ:

2. После знака «» записать Н 2 О + :

NaOH + CO 2 Н 2 О + .

3. Составить формулу образующейся соли. Для этого:

1) определить валентность металла по формуле гидроксида (по числу ОН-групп):

2) определить формулу кислотного остатка по формуле оксида:

CO 2 H 2 CO 3 CO 3 ;

3) найти наименьшее общее кратное (НОК) значений валентности:

4) разделить НОК на валентность металла, полученный индекс записать после металла: 2: 1 = 2, Na 2 CO 3 ;

5) разделить НОК на валентность кислотного остатка, полученный индекс записать после кислотного остатка (если кислотный остаток сложный, его заключают в скобки, индекс ставят за скобками): 2: 2 = 1, Na 2 CO 3 .

4. Формулу полученной соли записать в правой части схемы реакции:

NaOH + CO 2 H 2 O + Na 2 CO 3 .

5. Расставить коэффициенты в уравнении реакции:

2NaOH + CO 2 = H 2 O + Na 2 CO 3 .

Задание (1-й уровень).

Опираясь на алгоритм, составьте уравнения реакций:

1) NaOH + SO 2 … ;

2) Ca(OH) 2 + CO 2 … ;

3) KOH + SO 3 … ;

4) Ca(OH) 2 + SO 2 … .

Задания в т о р о г о уровня носят причинно-следственный характер.

Задание (2-й уровень). Роберт Вудворд, будущий нобелевский лауреат по химии, ухаживал за своей невестой, используя химические реактивы. Из дневника химика: «У нее замерзли руки во время прогулки на санях. И я сказал: “Хорошо бы достать бутылку с горячей водой!” – “Замечательно, но где мы ее возьмем?” “Я сейчас ее сделаю”, – ответил я и вынул из-под сиденья винную бутылку, на три четверти заполненную водой. Потом достал оттуда же флакон с серной кислотой и налил немного похожей на сироп жидкости в воду. Через десять секунд бутылка так нагрелась, что ее невозможно было держать в руках. Когда она начинала остывать, я добавлял еще кислоты, а когда кислота закончилась, достал банку с палочками едкого натра и понемногу подкладывал их. Таким образом, бутылка была нагрета почти до кипения всю поездку». Как объяснить тепловой эффект, использованный молодым человеком?

При выполнении таких заданий учащиеся опираются на знания, которые получили на уроке, а также пользуются дополнительными источниками.

Задания т р е т ь е г о уровня носят частично поисковый характер.

Задание 1 (3-й уровень). Какая физическая ошибка допущена в следующих стихах?

«Она жила и по стеклу текла,
Но вдруг ее морозом оковало,
И неподвижной льдинкой капля стала,
А в мире поубавилось тепла».
Ответ подтвердите расчетом.

Задание 2 (3-й уровень). Почему, если смочить пол водой, в комнате станет прохладнее?

При проведении уроков в рамках технологии уровневого обучения на подготовительном этапе после информирования учащихся о цели учебного занятия и соответствующей мотивации проводится вводный контроль, чаще всего в виде теста. Эта работа завершается взаимопроверкой, коррекцией выявленных пробелов и неточностей.

На этапе усвоения новых знаний новый материал дается в емкой, компактной форме, обеспечивающей перевод основной части класса на самостоятельную проработку учебной информации. Для учащихся, не разобравшихся в новой теме, материал объясняют повторно с использованием дополнительных дидактических средств. Каждый ученик по мере усвоения изучаемой информации включается в обсуждение. Эта работа может проходить как в группах, так и в парах.

На этапе закрепления обязательная часть заданий проверяется с помощью само- и взаимопроверки. Сверхнормативную часть работы оценивает учитель, наиболее значимые для класса сведения он сообщает всем учащимся.

Этап подведения итогов учебного занятия начинается с контрольного тестирования, которое, как и вводное, имеет обязательную и дополнительную части. Текущий контроль над усвоением учебного материала проводится по двухбалльной шкале (зачет/незачет), итоговый контроль – по трехбалльной шкале (зачет/хорошо/отлично). Для учащихся, не справившихся с ключевыми заданиями, организуется коррекционная работа до полного усвоения.

ТЕХНОЛОГИЯ ПРОБЛЕМНО-МОДУЛЬНОГО ОБУЧЕНИЯ

Перестройка процесса обучения на проблемно-модульной основе позволяет: 1) интегрировать и дифференцировать содержание обучения посредством группировки проблемных модулей учебного материала, обеспечивающих разработку учебного курса в полном, сокращенном и углубленном вариантах; 2) осуществлять самостоятельный выбор учащимися того или иного варианта курса в зависимости от уровня обученности и индивидуального темпа продвижения по программе;
3) акцентировать работу учителя на консультативно-координирующие функции управления индивидуальной учебной деятельностью учащихся.

Технология проблемно-модульного обучения основана на трех принципах: 1) «сжатие» учебной информации (обобщение, укрупнение, систематизация); 2) фиксирование учебной информации и учебных действий школьников в виде модулей; 3) целенаправленное создание учебных проблемных ситуаций.

П р о б л е м н ы й м о д у л ь состоит из нескольких взаимосвязанных блоков (учебных элементов (УЭ)).

Блок «входной контроль» создает настрой на работу. Как правило, здесь используются тестовые задания.

Блок актуализации – на этом этапе актуализируют опорные знания и способы действия, необходимые для усвоения нового материала, представленного в проблемном модуле.

Экспериментальный блок включает описание учебного эксперимента или лабораторной работы, способствующих выводу формулировок.

Проблемный блок – постановка укрупненной проблемы, на решение которой и направлен проблемный модуль.

Блок обобщения – первичное системное представление содержания проблемного модуля. Структурно может быть оформлен в виде блок-схемы, опорных конспектов, алгоритмов, символической записи и т.п.

Теоретический блок содержит основной учебный материал, расположенный в определенном порядке: дидактическая цель, формулировка проблемы (задачи), обоснование гипотезы, решение проблемы, контрольные тестовые задания.

Блок «выходной контроль» – контроль результатов обучения по модулю.

Кроме этих основных блоков могут быть включены и другие, например блок применения – система задач и упражнений или блок стыковки – совмещение пройденного материала с содержанием смежных учебных дисциплин, а также блок углубления – учебный материал повышенной сложности для учащихся, проявляющих особый интерес к предмету.

В качестве примера приведем фрагмент проблемно-модульной программы «Химические свойства ионов в свете теории электролитической диссоциации и окислительно-восстановительных реакций ».

Интегрирующая цель. Закрепить знания о свойствах ионов; развить навыки составления уравнений реакций между ионами в растворах электролитов и окислительно-восстановительных реакций; продолжить формировать умения наблюдать и описывать явления, выдвигать гипотезы и доказывать их.

УЭ-1. Входной контроль. Ц е л ь. Проверить уровень сформированности знаний об окислительно-восстановительных реакциях и умений составлять уравнения, применяя метод электронного баланса для расстановки коэффициентов.

Задание Оценка
1. Цинк, железо, алюминий в реакциях с неметаллами являются:
а) окислителями; б) восстановителями; в) не проявляют окислительно-восстановительных свойств; г) либо окислителями, либо восстановителями, это зависит от неметалла, с которым они вступают в реакцию
1 балл
2. Определите степень окисления химического элемента по следующей схеме:

Варианты ответа: а) –10; б) 0; в) +4; г) +6

2 балла
3. Определите число отданных (принятых) электронов по схеме реакции:

Варианты ответа: а) отдано 5е ; б) принято 5е ; в) отдан 1е ; г) принят 1е

2 балла
4. Общее число электронов, участвующих в элементарном акте реакции

равно: а) 2; б) 6; в) 3; г) 5

3 балла

(Ответы на задания УЭ-1: 1 – б; 2 – г; 3 – а; 4 – б.)

Если вы набрали 0–1 балл, изучите еще раз конспект «Окислительно-восстановительные реакции».

Если вы набрали 7–8 баллов, переходите к УЭ-2.

УЭ-2. Ц е л ь. Актуализировать знания об окислительно-восстановительных свойствах ионов металлов.

Задание. Закончите уравнения возможных химических реакций. Обоснуйте свой ответ.

1) Zn + CuCl 2 … ;

2) Fe + CuCl 2 … ;

3) Cu + FeCl 2 … ;

4) Cu + FeCl 3 … .

УЭ-3. Ц е л ь. Создание проблемной ситуации.

Задание. Выполните лабораторный опыт. В пробирку с 1 г меди налейте 2–3 мл 0,1М раствора трихлорида железа. Что происходит? Опишите свои наблюдения. Вас это не удивляет? Сформулируйте противоречие. Составьте уравнение реакции. Какие свойства здесь проявляет ион Fe 3+ ?

УЭ-4. Ц е л ь. Изучить окислительные свойства ионов Fe 3+ в реакции с галогенид-ионами.

Задание . Выполните лабораторный опыт. В две пробирки налейте по 1–2 мл 0,5М растворов бромида и йодида калия, добавьте к ним по 1–2 мл 0,1М раствора трихлорида железа. Опишите свои наблюдения. Сформулируйте проблему.

УЭ-5. Ц е л ь. Объяснить результаты эксперимента.

Задание . Какая реакция в задании из УЭ-4 не произошла? Почему? Для ответа на этот вопрос вспомните различия в свойствах атомов галогенов, сравните радиусы их атомов, составьте уравнение реакции. Сделайте вывод об окислительной силе иона железа Fe 3+ .

Домашнее задание. Ответьте письменно на следующие вопросы. Почему зеленый раствор хлорида железа(II) на воздухе быстро изменяет свою окраску на коричневую? Какое свойство иона железа Fe 2+ проявляется в данном случае? Составьте уравнение реакции хлорида железа(II) с кислородом в водном растворе. Какие еще реакции характерны для иона Fe 2+ ?

ТЕХНОЛОГИЯ ПРОЕКТНОГО ОБУЧЕНИЯ

Чаще всего можно услышать не о проектном обучении, а о проектном методе. Этот метод был сформулирован в США в 1919 г. В России он получил широкое распространение после издания брошюры В.Х.Килпатрика «Метод проектов. Применение целевой установки в педагогическом процессе» (1925). В основе этой системы лежат идеи о том, что только та деятельность выполняется ребенком с большим увлечением, которая выбрана свободно им самим и строится не в русле учебного предмета, при котором опора осуществляется на сиюминутные увлечения детей; истинное обучение никогда не бывает односторонним, важны и побочные сведения. Исходный лозунг основателей системы проектного обучения – «Все из жизни, все для жизни». Поэтому проектный метод изначально предполагает рассматривать явления окружающей нас жизни как опыты в лаборатории, в которой происходит процесс познания. Цель проектного обучения состоит в том, чтобы создать условия, при которых учащиеся самостоятельно и охотно отыскивают недостающие знания из разных источников, учатся пользоваться полученными знаниями для решения познавательных и практических задач, приобретают коммуникативные умения, работая в различных группах; развивают у себя исследовательские умения (умения выявления проблем, сбора информации, наблюдения, проведения эксперимента, анализа, построения гипотез, обобщения), развивают системное мышление.

К настоящему моменту сложились следующие стадии разработки проекта: разработка проектного задания, разработка самого проекта, оформление результатов, общественная презентация, рефлексия. Возможные темы учебных проектов разнообразны, как и их объемы. По времени можно выделить три вида учебных проектов: краткосрочные (2–6 ч); среднесрочные (12–15 ч); долгосрочные, требующие значительного времени для поиска материала, его анализа и т.д. Критерием оценки является достижение при его реализации как цели проекта, так и надпредметных целей (последнее представляется более важным). Главными недостатками в использовании метода являются низкая мотивация учителей к его использованию, низкая мотивация учащихся к участию в проекте, недостаточный уровень сформированности у школьников умений исследовательской деятельности, нечеткость определения критериев оценки результатов работы над проектом.

В качестве примера реализации проектной технологии приведем разработку, выполненную учителями химии США. В ходе работы над этим проектом учащиеся овладевают и пользуются знаниями по химии, экономике, психологии, участвуют в самых различных видах деятельности: опытно-экспериментальной, расчетной, маркетинговой, снимают фильм.

Проектируем товары бытовой химии*

Одна из задач школы – показать прикладное значение химических знаний. Задание данного проекта – создание предприятия по производству средства для мытья окон. Участники разбиваются на группы, образуя «производственные фирмы». Перед каждой «фирмой» стоят следующие задачи:
1) разработать проект нового средства для мытья окон; 2) изготовить экспериментальные образцы нового средства и провести их испытания; 3) рассчитать себестоимость разработанного товара;
4) провести маркетинговые исследования и рекламную кампанию товара, получить сертификат качества. По ходу игры школьники не только знакомятся с составом и химическим действием бытовых моющих средств, но и получают начальные сведения об экономике и рыночной стратегии. Итогом работы «фирмы» является технико-экономический проект нового моющего средства.

Работа проводится в следующей последовательности. Сначала «сотрудники фирмы» вместе с преподавателем испытывают одно из стандартных средств для мытья окон, переписывают с этикетки его химический состав, разбирают принцип моющего действия. На следующем этапе команды приступают к разработке собственной рецептуры моющего средства на основе тех же компонентов. Далее каждый проект проходит стадию лабораторного воплощения. На основе разработанной рецептуры учащиеся смешивают необходимые количества реактивов и помещают полученную смесь в небольшие бутылочки с пульверизатором. На бутылочки наклеиваются этикетки с торговым названием будущего изделия и надпись «Новое средство для мытья окон». Далее происходит контроль качества. «Фирмы» оценивают моющую способность своих изделий по сравнению с покупным средством, рассчитывают себестоимость продукции. Следующий этап – получение «сертификата качества» на новое моющее средство. «Фирмы» представляют на утверждение комиссии следующие сведения о своем товаре – соответствие стандартам качества (результаты лабораторных испытаний), отсутствие экологически опасных веществ, наличие инструкции о способе применения и хранения изделия, проект торговой этикетки, предполагаемое название и ориентировочную цену изделия. На заключительном этапе «фирма» проводит рекламную кампанию. Разрабатывают сюжет и снимают рекламный ролик продолжительностью 1 мин. Итогом игры может стать презентация нового средства с приглашением родителей и других участников игры.

Индивидуализация обучения – это не дань моде, а насущная необходимость. Технологии индивидуализированного обучения химии при всем разнообразии методических приемов имеют много общего. Все они развивающие, обеспечивающие четкое управление учебным процессом и прогнозируемый, воспроизводимый результат. Нередко технологии индивидуализированного обучения химии используются в сочетании с традиционными методами. Включение любой новой технологии в учебный процесс требует пропедевтики, т.е. постепенной подготовки учащихся.

Вопросы и задания

1. Охарактеризуйте роль учебного предмета химии в решении задач развития умственной деятельности учащихся.

Ответ . Для умственного развития важно накопление не только знаний, но и прочно закрепленных умственных приемов, интеллектуальных умений. Например, при формировании химического понятия требуется объяснять, какими приемами следует пользоваться, чтобы знания были правильно усвоены, а эти приемы затем использованы по аналогии и в новых ситуациях. При изучении химии формируются и развиваются интеллектуальные умения. Очень важно научить учащихся логически мыслить, использовать приемы сравнения, анализа, синтеза и выделения главного, делать выводы, обобщать, аргументированно спорить, последовательно излагать свои мысли. Важно также использовать рациональные приемы учебной деятельности.

2. Можно ли отнести технологии индивидуализированного обучения к развивающему обучению?

Ответ . Обучение по новым технологиям обеспечивает полноценное усвоение знаний, формирует учебную деятельность и тем самым непосредственно влияет на умственное развитие детей. Индивидуализированное обучение, безусловно, является развивающим.

3. Разработайте по любой теме школьного курса химии методику обучения по одной из индивидуализированных технологий.

Ответ . Первый урок при изучении темы «Кислоты» – урок объяснения нового материала. Согласно индивидуализированной технологии в нем выделим три этапа. 1-й этап – представление нового материала – сопровождается контролем усвоения. По ходу урока учащиеся заполняют листок, в котором отвечают на вопросы по теме. (Приводятся примерные вопросы и ответы на них.) 2-й этап – осмысление нового материала. В беседе, связанной со свойствами кислот, ученику дается возможность выразить свои мысли по теме. 3-й этап – тоже мыслительный, но исследовательского характера, по конкретной проблеме. Например, растворение меди в азотной кислоте.

Второй урок – тренировочный, систематизация знаний. Здесь учащиеся выбирают и выполняют задания разного уровня трудности. Учитель оказывает им индивидуальную консультативную помощь.

Третий урок – контроль усвоения пройденного материала. Его можно провести в форме контрольной работы, теста, набора заданий по задачнику, где простые задания – на оценку «3», а сложные – на «4» и «5».

* Головнер В.Н . Химия. Интересные уроки. Из зарубежного опыта. М.: Изд-во НЦ ЭНАС, 2002.

Л и т е р а т у р а

Беспалько В.П . Программированное обучение (дидактические основы). М.: Высшая школа, 1970; Гузик Н.П . Учить учиться. М.: Педагогика, 1981; Гузик Н.П. Дидактический материал по химии для
9 класса. Киев: Радянська школа, 1982; Гузик Н.П. Обучение органический химии. М.: Просвещение, 1988; Кузнецова Н.Е . Педагогические технологии в предметном обучении. СПб.: Образование, 1995; Селевко Г.К . Современные образовательные технологии. М.: Народное образование, 1998; Чернобельская Г.М. Методика обучения химии в средней школе. М.: ВЛАДОС, 2000; Унт И. Индивидуализация и дифференциация обучения. М.: Педагогика, 1990.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ХИМИИ И ПРИКЛАДНОЙ ЭКОЛОГИИ

А.А. Капустина методика преподавания химии курс лекций

Владивосток

Издательство Дальневосточного университета

Методическое пособие подготовлено кафедрой

неорганической и элемен­то­органической химии ДВГУ.

Печатается по решению учебно-методического совета ДВГУ.

Капустина А.А.

К 20 Методическое пособие к семинарским занятиям по курсу "Строение ве­щест­ва" / А.А. Капустина. – Владивосток: Изд-во Дальневост. ун-та, 2007. – 41 с.

В сжатом виде содержится материал по основным разделам курса, даются образцы решенных задач, контрольные вопросы и задания. Предназначено для студентов 3‑го курса химического факультета при их подготовке к семинарским занятиям по курсу "Строение вещества".

© Капустина А.А., 2007

©Издательство

Дальневосточного университета, 2007

Лекция № 1

Литература:

1. Зайцев О.С., Методика обучения химии, М. 1999 г.

2. Журнал «Химия в школе».

3. Чернобельская Г.М. Основы методики обучения химии, М. 1987г.

4. Полосин В.С.. Школьный эксперимент по неорганической химии, М., 1970 г.

Предмет методики обучения химии и ее задачи

Предметом методики преподавания химии является общественный процесс обучения основам современной химии в школе (техникуме, ВУЗе).

Процесс обучения состоит из трех взаимосвязанных сторон:

1) учебного предмета;

2) преподавания;

3) учения.

Учебным предметом предусматривается объем и уровень научных знаний, которые должны быть усвоены учащимися. Таким образом, мы познакомимся с содержанием школьных программ, требованиями к знаниям, умениям и навыкам учащихся на разных этапах обучения. Выясним, какие темы являются фундаментом химических знаний, определяют химическую грамотность, какие играют роль дидактического материала.

Преподавание – это деятельность учителя, посредством которой он обучает учащихся, то есть:

Сообщает научные знания;

Прививает практические умения и навыки;

Формирует научное мировоззрение;

Готовит к практической деятельности.

Мы рассмотрим: а) основные принципы обучения; б) методы обучения, их классификацию, особенности; в) урок, как основную форму обучения в школе, методы построения, классификацию уроков, требования к ним; г) методы опроса и контроля знаний; д) методы обучения в ВУЗе.

Учение – это деятельность учащихся, состоящая в:

Восприятии;

Осмыслении;

Усвоении;

Закреплении и применении на практике учебного материала.

Таким образом, предметом методики обучения химии является исследование следующих проблем :

а) целей и задач обучения (для чего учить?);

б) учебного предмета (чему учить?);

в) преподавания (как учить?);

г) учения (как учатся учащиеся?).

Методика преподавания химии тесно связана и исходит из собственно науки химии, опирается на достижения педагогики и психологии.

В задачу методики обучения входит:

а) дидактическое обоснование отбора научных знаний, способствующих формированию у учащихся знаний основ науки.

б) выбор форм и методов обучения для успешного усвоения знаний, выработки умений и навыков.

Начнем с принципов обучения.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

При сдаче кандидатского экзамена аспирант (соискатель) должен обнаружить понимание закономерностей, движущих сил и динамики развития химической науки, эволюции и основных структурных элементов химических знаний, в том числе фундаментальных методологических идей, теорий и естественно-научной картины мира; глубокие знания программ, учебников, учебных и методических пособий по химии для средней общеобразовательной школы и умение анализировать их; раскрывать основные идеи и методические варианты изложения важнейших разделов и тем курса химии на базовом, повышенном и углубленном уровнях её изучения, дисциплин химического блока в средней и высшей школе; глубокое понимание перспектив развития химического образования в учебных заведениях различных типов; умение анализировать собственный опыт работы, опыт работы учителей-практиков и педагогов-новаторов. Сдающий кандидатский экзамен должен владеть инновационными педагогическими технологиями обучения химии и дисциплин химического блока, быть знакомым с современными тенденциями развития химического образования в Республике Беларусь и мире в целом, знать систему школьного и вузовского химического эксперимента.

В программе приведен перечень только основной литературы. При подготовке к экзамену соискатель (аспирант) пользуется учебными программами, учебниками, сборниками задач и научно-популярной литературой по химии для средней общеобразовательной школы, обзорами актуальных проблем развития химии, а также статьями по методике её преподавания в научно-методических журналах (“Химия в школе”, "Химия: методика преподавания», “Хімія: праблемы выкладання”, “Адукацыя і выхаванне”, “Весці БДПУ” и др.) и дополнительной литературой по теме своего исследования.

Основная цель данной программы – выявить у соискателей сформированность системы методических взглядов и убеждений, осознанных знаний и практических умений, обеспечивающих эффективное осуществление процесса обучения химии в учебных заведениях всех типов и уровней.

Методическая подготовка предусматривает реализацию следующих задач :

  • формирование научной компетентности и методической культуры аспирантов и соискателей ученых степеней кандидата педагогических наук, овладение современными технологиями обучения химии;
  • развитие у соискателей умений критически анализировать свою педагогическую деятельность, изучать и обобщать передовой педагогический опыт;
  • формирование исследовательской культуры соискателей по организации, управлению и осуществлению процесса химического образования.

При сдаче кандидатского экзамена испытуемый должен обнаружить понимание закономерностей, движущих сил и динамики развития химической науки, эволюции и основных структурных элементов химических знаний, в том числе фундаментальных методологических идей, теорий и естественно-научной картины мира; глубокое знание программ, учебников, учебных и методических пособий по химии для средней и высшей школы и умение анализировать их; раскрывать основные идеи и методические варианты изложения важнейших разделов и тем курса химии на базовом, повышенном и углубленном уровнях её изучения, а также курсов важнейших химических дисциплин в вузе; понимание перспектив развития химического образования в учебных заведениях различных типов; умение анализировать собственный опыт работы, опыт работы учителей-практиков и педагогов-новаторов.

Сдающий кандидатский экзамен должен владеть инновационными педагогическими технологиями обучения химии, быть знакомым с современными тенденциями развития химического образования в Республике Беларусь и мире в целом, знать систему и структуру школьного и вузовского химического практикума.

Соискатели должны знать все функции учителя химии и преподавателя дисциплин химического блока и психолого-педагогические условия их выполнения; уметь применять их в практической деятельности.

Раздел І.

Общие вопросы теории и методики обучения химии

Введение

Цели и задачи учебного курса методики обучения химии.

Структура содержания методики обучения химии как науки, её методология. Краткая история развития методики обучения химии. Идея единства образовательной, воспитывающей и развивающей функций обучения химии как ведущая в методике. Построение учебного курса методики обучения химии.

Современные проблемы обучения и преподавания. Пути совершенствования обучения химии. Преемственность в обучении химии в средней и высшей школе.

1.1 Цели и задачи обучения химии в средней и высшей школе.

Модель специалиста и содержание обучения. Зависимость содержания обучения от целей обучения. Особенности преподавания химии как профилирующей и как непрофилирующей учебной дисциплины.

Научно-методологические основания химии. Методология в философии и в естествознании. Принципы, этапы и методы научного познания. Эмпирический и теоретический уровни химического исследования. Общенаучные методы познания в химии. Частные методы химической науки. Химический эксперимент, его структура, цели и значение в исследовании веществ и явлений. Особенности современного химического эксперимента как метода научного познания.

Построение курса химии на основе переноса системы науки на систему обучения. Основные учения химической науки и внутринаучные связи между ними. Влияние межнаучных связей на содержание учебной дисциплины. Показ межпредметных связей курсов химии, физики, математики, биологии, геологии и других фундаментальных наук. Связь химии с науками гуманитарного цикла.

Комплекс факторов определяющих отбор содержания учебного предмета химии и дидактические требования к нему: социальный заказ общества, уровень развития химической науки, возрастные особенности учащихся и студентов, условия работы учебных заведений.

Современные идеи, реализуемые в содержании учебного предмета химии и дисциплин химического блока: методологизация, экологизация, экономизация, гуманизация, интегративность.

Анализ и обоснование содержания и построения курса химии в массовой общеобразовательной школе, дисциплин химического блока в системе высшего образования. Важнейшие блоки содержания, их структура и внутрипредметные связи. Теории, законы, системы понятий, факты, методы химической науки и их взаимодействие в школьном курсе химии. Сведения о вкладе в науку выдающихся учёных-химиков.

Систематические и несистематические курсы химии. Пропедевтические курсы химии. Интегративные курсы естествознания. Понятие о модульной структуре содержания. Понятие о линейном и концентрическом построении курса.

Стандарты, программы по химии для средней и высшей школы как нормативный документ, регламентирующий обучение учащихся средней школы и студентов, структура и методический аппарат стандарта программы.

1.2. Воспитание и развитие личности в процессе обучения химии

Концепция личностно-ориентированного обучения И.С. Якиманской в свете идеи гуманизации обучения химии. Гуманистическая направленность школьного курса химии.

Вопросы экологического, экономического, эстетического и др. направлений воспитания при изучении химии. Программа экологизированного курса химии В.М. Назаренко.

Психологические теории развивающего обучения как научная основа оптимизации изучения химии в средних учебных заведениях.

Проблемное обучение химии как важное средство развития мышления обучающихся. Признаки учебной проблемы в изучении химии и этапы её решения. Способы создания проблемной ситуации, деятельность учителя и учащихся в условиях проблемного обучения химии. Положительные и негативные стороны проблемного обучения.

Сущность и пути использование дифференцированного подхода в обучении химии как средства развивающего обучения.

1.3. Методы обучения химии в средней и высшей школе

Методы обучения химии как дидактический эквивалент методов химической науки. Специфика методов обучения химии. Наиболее полная реализация единства трёх функций обучения как главный критерий выбора методов обучения. Необходимость, обоснованность и диалектика сочетания методов обучения химии. Понятие о современных технологиях обучения.

Классификация методов обучения химии по Р.Г. Ивановой. Словесные методы обучения. Объяснение, описание, рассказ, беседа. Лекционно-семинарская система обучения химии.

Словесно-наглядные методы обучения химии. Химический эксперимент как специфический метод и средство обучения химии, его виды, место и значение в учебном процессе. Образовательная, воспитывающая и развивающая функции химического эксперимента.

Демонстрационный эксперимент по химии и требования к нему. Методика демонстрирования химических опытов. Техника безопасности при их выполнении.

Методика выбора и использование различных средств наглядности при изучении химии в зависимости от характера содержания и возрастных особенностей учащихся. Понятие о комплексе средств обучения по конкретным темам курса химии. Методика составления и использования в обучении опорных конспектов по химии.

Управление познавательной деятельностью учащихся и студентов при различных сочетаниях слова учителя с наглядностью и экспериментом.

Словесно-наглядно-практические методы обучения химии. Самостоятельная работа учащихся и студентов как путь реализации словесно-наглядно-практических методов. Формы и виды самостоятельной работы по химии. Эксперимент по химии: лабораторные опыты и практические занятия по химии. Методика формирования у учащихся и студентов лабораторных умений и навыков.

Программированное обучение как вид самостоятельной работы по химии. Основные принципы программированного обучения.

Методика использования в обучении химических задач. Роль задач в реализации единства трёх функций обучения. Место задач в курсе химии и в учебном процессе. Классификация химических задач. Решение расчётных задач по ступеням обучения химии. Методика отбора и составления задач для урока. Использование количественных понятий для решения расчётных задач. Единый методический подход к решению химических задач в средней школе. Решение экспериментальных задач.

Методика использования ТСО в обучении химии. Методика работы с графопроектором, учебными кино- и диафильмами, диапозитивами, магнитофоном и видеомагнитофоном.

Компьютеризация обучения. Использование методов программированного и алгоритмизированного обучения в методиках компьютерного обучения химии. Контролирующие компьютерные программы.

1.4. Контроль и оценка результатов обучения химии

Цели, задачи и значение контроля результатов обучения химии.

Система контроля результатов обучения. Кредитно-рейтинговая система и система итогового контроля. Содержание заданий для контроля. Формы контроля. Классификация и функции тестов. Методы устного контроля результатов обучения: индивидуальный устный опрос, фронтальная контролирующая беседа, зачёт, экзамен. Методы письменной проверки результатов: контрольная работа, письменная самостоятельная работа контролирующего характера, письменное домашнее задание. Экспериментальная проверка результатов обучения.

Использование компьютерной техники и других технических средств для контроля результатов обучения.

Оценивание результатов обучения химии по 10-балльной шкале оценок в средней и высшей школе, принятой в Республике Беларусь.

1.5. Средства обучения химии в средней и высшей школе.

Химический кабинет

Понятие о системе средств обучения химии и учебном оборудовании. Химический кабинет средней школы и лаборатория студенческого практикума в вузе как необходимое условие осуществления полноценного обучения химии. Современные требования к школьному химическому кабинету и студенческой лаборатории. Лабораторные помещения и мебель. Устройство класса-лаборатории и лабораторных комнат. Система учебного оборудования кабинета химии и химических лабораторий. Оборудование рабочих мест преподавателя, учащихся, студентов и лаборанта.

Средства для обеспечения требований техники безопасности при работе в химическом кабинете и химических лабораториях. Работа преподавателя учащихся и студентов по самооборудованию химического кабинета и лабораторий.

Учебник химии и химических дисциплин как обучающая система. Роль и место учебника в учебном процессе. Краткая история отечественных школьных и вузовских учебников химии. Зарубежные учебники химии. Структура содержания учебника химии и его отличие от другой учебной и научно-популярной литературы. Требования к учебнику химии, определяемые его функциями.

Методика обучения учащихся и студентов работе с учебником. Ведение рабочей и лабораторной тетради по химии.

Технические средства обучения, их виды и разновидности: меловая доска, кодоскоп (графопроектор), диапроектор, кинопроектор, эпидиаскоп, компьютер, видео- и звуковоспроизводящая аппаратура. Таблицы, рисунки и фотографии как средства обучения. Пути использования технических средств обучения для повышения познавательной активности обучаемых и повышения эффективности усвоения знаний. Дидактические возможности технических средств обучения и оценка эффективности их применения.

Роль компьютера в организации и проведении внеклассной и внеаудиторной познавательной деятельности обучающихся. Компьютерные учебные пособия по курсам химии. Интернет-ресурсы по химии и возможности их использования при обучении в средней и высшей школе.

1.6. Химический язык как предмет и средство познания в обучении химии. Структура химического языка. Химический язык и его функции в процессе преподавания и учения. Место химического языка в системе средств обучения. Теоретические основы формирования химического языка. Объем и содержание языковых знаний, умений и навыков в школьном и вузовском курсе химии и их связь с системой химических понятий. Методика изучения терминологии, номенклатуры и символики в школьном и вузовском курсе химии.

1.7. Организационные формы обучения химии в средней и высшей школе

Урок как основная организационная форма в обучении химии в средней школе. Урок как структурный элемент учебного процесса. Типы уроков. Урок как система. Требования к уроку химии. Структура и построение уроков разного типа. Понятие о доминирующей дидактической цели урока.

Образовательная, воспитывающая и развивающая цели урока. Система содержания урока. Значение и методика отбора методов и дидактических средств на уроке.

Подготовка учителя к уроку. Замысел и проектирование урока. Определение целей урока. Методика планирования системы содержания урока. Поэтапные обобщения. Планирование системы организационных форм. Методика установления межпредметных связей содержания урока с другими учебными предметами. Методика определения системы логических подходов методов и средств обучения во взаимосвязи с целями, содержанием и уровнем обученности учащихся. Планирование вводной части урока. Методика установления внутрипредметных связей урока с предшествующим и последующим материалом.

Техника и методика составления плана и конспекта урока химии и работа над ними. Моделирование урока.

Проведение урока. Организация работы класса. Общение учителя с учащимися на уроке. Система заданий и требований учителя к учащимся на уроке и обеспечение их выполнения. Экономия времени на уроке. Анализ урока химии. Схема анализа урока в зависимости от его типа.

Факультативные занятия по химии. Цель и задачи школьных факультативов. Место факультативных занятий в системе форм обучения химии. Взаимосвязь факультативных занятий по химии, их содержание и требования к ним. Особенности организации и методы проведения факультативных занятий по химии.

Внеурочная работа по химии. Цель внеурочной работы и её значение в учебном процессе. Система внеурочной работы по химии. Содержание, формы, виды и методы внеурочной работы по химии. Планирование внеурочных занятий, средства их организации и проведения.

Организационные формы обучения химии в вузе: лекция, семинар, лабораторный практикум. Методика проведения вузовской лекции по химии. Требования к современной лекции. Организация лекционной формы обучения. Общение лектора с аудиторией. Лекционные демонстрации и демонстрационный эксперимент. Лекционный контроль за усвоением знаний.

Семинар в обучении химии и виды семинарских занятий. Основная цель семинарского занятия – развитие речи обучаемых. Дискуссионный способ проведения семинаров. Отбор материала для дискуссионного обсуждения. Методика организации семинарского занятия.

Лабораторный практикум и его роль в обучении химии. Формы организации лабораторных практикумов. Индивидуальное и групповое выполнение лабораторных работ. Учебно-научное общение при выполнении лабораторных заданий.

1.8. Формирование и развитие систем важнейших химических понятий

Классификация химических понятий, их взаимосвязь с теориями и фактами и методические условия их формирования. Понятия опорные и развивающиеся. Взаимосвязь систем понятий о веществе, химическом элементе, химической реакции между собой.

Структура системы понятий о веществе: основные её компоненты – понятия о составе, строении, свойствах, классификации, химических методах исследования и применении веществ. Связь этих компонентов с системой понятий о химической реакции. Раскрытие диалектической сущности понятия о веществе в процессе его изучения. Качественные и количественных характеристики вещества.

Структура системы понятий о химическом элементе, её основные компоненты: классификация химических элементов, их распространённость в природе, атом химического элемента как конкретный носитель понятия «химический элемент». Систематизация сведений о химическом элементе в периодической системе. Проблема взаимосвязи понятий «валентность» и «степень окисления» в курсе химии, а также понятий «химический элемент» и «простое вещество». Формирование и развитие понятий о естественной группе химических элементов. Методика изучения групп химических элементов.

Структура системы понятий о химических объектах и их моделях. Типология химических объектов (вещество, молекула, молекулярная модель), их сущность, взаимосвязь, инвариантный и вариативный компоненты. Типология моделей, их использование в химии. Проблема взаимосвязи модели и реального объекта в химии.

Структура содержания понятия «химическая реакция», её компоненты: признаки, сущность и механизмы, закономерности возникновения и протекания, классификация, количественные характеристики, практическое использование и методы исследования химических реакций. Формирование и развитие каждого компонента в их взаимосвязи. Связь понятия «химическая реакция» с теоретическими темами и с другими химическими понятиями. Обеспечение понимания химической реакции как химической формы движения материи.

2. Методика химико-педагогических исследований

2.1 Методология химико-педагогических исследований

Наука и научное исследование

Педагогические науки. Типы научно-педагогических исследований, Структурные компоненты НИР. Соотношение науки и научного исследования.

Химико-педагогическое исследование

Химико-педагогические исследования и их специфика. Специфика объекта и предмета научно-педагогических исследований по теории и методике химического образования.

Методологические основы химико-педагогических исследований

Методология науки. Методологические подходы (системно-структурный, функциональный, личностно-деятельностный). Интегратив-ный подход в химико-педагогических исследованиях.

Психолого-педагогические концепции и теории, используемые в исследованиях по теории и методике обучения химии. Учет в исследовании специфики обучения химии, обусловленный спецификой химии.

Рассмотрение методической системы в триединстве обучения, воспитания и развития, преподавания и учения, теоретической и аксеологической ступеней познания.

Методические основы выявления закономерных связей в обучении (адекватность целевой, мотивационной, содержательной» процессуальной и результативно-оценочной сторон обучения).

2.2. Методика и организация химико-педагогических исследований

Методы в химико-педагогических исследованиях

Методы исследования. Классификация методов исследования (по степени общности, по целевому назначению).

Общенаучные методы. Теоретический анализ и синтез. Аналитический обзор методической литературы. Моделирование. Изучение и обобщение педагогического опыта. Анкеты закрытого и открытого типа (достоинства и недостатки). Педагогический эксперимент

Организация и этапы исследований

Организация химико-педагогических исследований. Основные этапы исследования (констатирующий, теоретический, экспериментальный, заключительный).

Выбор объекта, предмета и цели исследования в соответствии с проблемой (темой). Постановка и реализация задач. Формулирование гипотезы исследования. Корректировка гипотезы в ходе исследования.

Выбор и реализация методов, позволяющих оценить эффективность исследования, подтверждение гипотезы и достижение цели исследования.

Педагогический эксперимент в химическом образовании

Педагогический эксперимент, сушность, требования, план и условия проведения, функции, типы и виды, методика и организация, проект, этапы, стадии, факторы.

2.3 Оценка эффективности химико-педагогических исследований

Новизна и значимость исследований Критерии новизны и значимости химико-педагогических исследований. Понятие о критериях эффективности педагогических исследований. Новизна, актуальность, теоретическая и практическая значимость. Масштабы и готовность к внедрению. Эффективность.

Измерение в педагогических исследованиях

Измерение в педагогических исследованиях. Понятие об измерениях в педагогических исследованиях. Критерии и показатели оценки результатов образовательного процесса.

Параметры эффективности образовательного процесса. Компонентный анализ результатов образования и обучения. Пооперационный анализ качества знаний и умений учащихся. Статистические методы в педагогике и методике обучения химии, критерии достоверности.

Обобщение и оформление научных результатов

Обработка, интерпретация и сведение результатов НИР. Обработка и представление результатов химико-педагогических исследований (в таблицы, диаграммы, схемы, рисунки, графики). Литературное оформление результатов химико-педагогического исследования.

Диссертация как выпускная НИР и как жанр литературного произведения о результатах химико-педагогического исследования.

Раздел ІІІ. Частные вопросы теории и методики обучения химии

3.1 Научные основы школьного и вузовского вузовского курсов химии

Общая и неорганическая химия

Основные химические понятия и законы. Атомно-молекулярное учение. Основные стехиометрические законы химии. Законы газового состояния.

Важнейшие классы и номенклатура неорганических веществ. Общие положения химической номенклатуры. Классификация и номенклатура простых и сложных веществ.

Периодический закон и строение атома. Атом. Атомное ядро. Изотопы. Явление радиоактивности. Квантово-механическое описание атома. Электронное облако. Атомная орбиталь. Квантовые числа. Принципы заполнения атомных орбиталей. Основные характеристики атомов: атомные радиусы, энергии ионизации, сродство к электрону, электроотрицательность, относительная электроотрицательность. Периодический закон Д.И. Менделеева. Современная формулировка периодического закона. Периодическая система как естественная классификация элементов по электронным структурам атомов. Периодичность свойств химических элементов.

Химическая связь и межмолекулярное взаимодействие. Природа химической связи. Основные характеристики химической связи. Основные типы химической связи. Ковалентная связь. Понятие о методе валентных связей. Полярность связи и полярность молекул. s- и p-связи. Кратность связи. Типы кристаллических решеток, образованных веществами с ковалентной связью в молекулах. Ионная связь. Ионные кристаллические решетки и свойства веществ с ионной кристаллической решеткой. Поляризуемость и поляризующее действие ионов, их влияние на свойства веществ. Металлическая связь. Межмолекулярное взаимодействие. Водородная связь. Внутримолекулярные и межмолекулярные водородные связи.

Теория электролитической диссоциации. Основные положения теории электролитической диссоциации. Причины и механизм электролитической диссоциации веществ с различным типом химической связи. Гидратация ионов. Степень электролитической диссоциации. Сильные и слабые электролиты. Истинная и кажущаяся степень диссоциации. Коэффициент активности. Константа диссоциации. Кислоты, основания и соли с точки зрения теории электролитической диссоциации. Амфотерные электролиты. Электролитическая диссоциация воды. Ионное произведение воды. pH среды. Индикаторы. Буферные растворы. Гидролиз солей. Произведение растворимости. Условия образования и растворения осадков. Протонная теория кислот и оснований Бренстеда и Лоури. Понятие о кислотах и основаниях Льюиса. Константы кислотности и основности.

Комплексные соединения. Строение комплексных соединений. Природа химической связи в комплексных соединениях. Классификация, номенклатура комплексных соединений. Устойчивость комплексных соединений. Константа нестойкости. Образование и разрушение комплексных ионов в растворах. Кислотно-основные свойства комплексных соединений. Объяснение гидролиза солей и амфотерности гидроксидов с точки зрения комплексообразования и протонной теории кислотно-основного равновесия.

Окислительно-восстановительные процессы. Классификация окислительно-восстановительных реакций. Правила составления уравнений окислительно-восстановительных реакций. Методы расстановки коэффициентов. Роль среды в протекании окислительно-восстановительных процессов. Электродный потенциал. Понятие о гальваническом элементе. Стандартные ред-окс потенциалы. Направленность окислительно-восстановительных реакций в растворах. Коррозия металлов и способы защиты. Электролиз растворов и расплавов.

Свойства основных элементов и их соединений. Галогены. Общая характеристика элементов и простых веществ. Химические свойства простых веществ. Получение, строение и химические свойства основных видов соединений. Биогенное значение элементов и их соединений. p-элементы шестой, пятой и четвертой групп. Общая характеристика элементов и простых веществ. Химические свойства простых веществ. Получение. Cтроение и химические свойства основных видов соединений. Биогенное значение элементов и их соединений.

Металлы. Положение в периодической системе и особенности физико-химических свойств. Природные соединения металлов. Принципы получения. Роль металлов в жизнедеятельности растительных и местных организмов.

Физическая и коллоидная химия

Энергетика и направленность химических процессов. Понятие о внутренней энергии системы и энтальпии. Теплота реакции, ее термодинамические и термохимические обозначения. Закон Гесса и следствия из него. Оценка возможности протекания химической реакции в заданном направлении. Понятие об энтропии и изобарно-изотермическом потенциале. Максимальная работа процесса. Роль энтальпийного и энтро-пийного факторов в направленности процессов при различных условиях.

Скорость химических реакций, химическое равновесие. Скорость химических реакций. Факторы, влияющие на скорость химической реакции. Классификация химических реакций. Молекулярность и порядок реакции. Энергия активации. Обратимые и необратимые реакции. Условия наступления химического равновесия. Константа химического равновесия. Принцмп Ле Шателье-Брауна и его применение. Понятие о катализе. Катализ гомогенный и гетерогенный. Теории катализа. Биокатализ и биокатализаторы.

Свойства разбавленных растворов. Общая характеристика разбавленных растворов неэлектролитов. Свойства растворов (давление насыщенного пара над раствором, эбулиоскопия и криоскопия, осмос). Роль осмоса в биологических процессах. Дисперсные системы, их классификация. Коллоидные растворы и их свойства: кинетические, оптические, электри-ческие. Строение коллоидных частиц. Значение коллоидов в биологии.

Органическая химия

Предельные углеводороды (алканы). Изомерия. Номенклатура. Методы синтеза. Физические и химические свойства алканов. Реакции радикального замещения S R . Радикальное галогенирование алканов. Галогеналканы, химические свойства и применение. Непредельные углеводороды. Алкены. Изомерия и номенклатура. Электронное строение алкенов. Способы получения и химические свойства. Реакции ионного присоединения по двойной связи, механизмы и основные закономерности. Полимеризация. Понятие о полимерах, их свойствах и характеристиках, использовании в быту и промышленности. Алкины. Изомерия и номенклатура. Получение, химические свойства и применение алкинов. Алкадиены. Классификация, номенклатура, изомерия, электронное строение.

Ароматические углеводороды (арены). Номенклатура, изомерия. Ароматичность, правило Хюккеля. Полициклические ароматические системы. Методы получения бензола и его гомологов. Реакции электрофильного замещения в ароматическом кольце S E Ar, общие закономерности и механизм.

Спирты. Одноатомные и многоатомные спирты, номенклатура, изомерия, способы получения. Физические, химические и медико-биологические свойства. Фенолы, методы получения. Химические свойства: кислотность (влияние заместителей), реакции по гидроксильной группе и ароматическому кольцу.

Амины. Классификация, изомерия, номенклатура. Методы получения алифатических и ароматических аминов, их основность и химические свойства.

Альдегиды и кетоны. Изомерия и номенклатура. Сравнительная реакционная способность альдегидов и кетонов. Способы получения и химические свойства. Альдегиды и кетоны ароматического ряда. Способы получения и химические свойства.

Карбоновые кислоты и их производные. Карбоновые кислоты. Номенклатура. Факторы, влияющие на кислотность. Физико-химические свойства и методы получения кислот. Карбоновые кислоты ароматического ряда. Способы получения и химические свойства. Производные карбоновых кислот: соли, галогенангидриды, ангидриды, эфиры, амиды и их взаимные переходы. Механизм реакции этерификации.

Углеводы. Моносахариды. Классификация, стереохимия, таутомерия. Методы получения и химические свойства. Важнейшие представители моносахаридов и их биологическая роль. Дисахариды, их типы, классификация. Различия в химических свойствах. Муторотация. Инверсия сахарозы. Биологическое значение дисахаридов. Полисахариды. Крахмал и гликоген, их строение. Целлюлоза, строение и свойства. Химическая переработка целлюлозы и применение ее производных.

Аминокислоты. Строение, номенклатура, синтез и химические свойства. a-Аминокислоты, классификация стереохимия, кислотно-основные свойства, особенности химического поведения. Пептиды, пептидная связь. Разделение аминокислот и пептидов.

Гетероциклические соединения. Гетероциклические соединения, классификация и номенклатура. Пятичленные гетероциклы с одним и двумя гетероатомами, их ароматичность. Шестичленные гетероциклы с одним и двумя гетероатомами. Представление о химических свойствах гетероциклов с одним гетероатомом. Гетероциклы в составе природных соединений.

3.2 Особенности содержания, структуры и методики изучения курса химии в средней и высшей школе.

Принципы построения и научно-методический анализ учебного обеспечения курсов химии в основной. полной (средней) и высшей школе. Образовательно-воспитательное значение курсов химии.

Научно-методический анализ раздела “Основные химические понятия”. Структура, содержание и логика изучения основных химических понятий на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика формирования основных химических понятий. Особенности формирования понятий о химическом элементе и веществе на первоначальном этапе. Общие методические принципы изучения конкретных химических элементов и простых веществ на основе атомно-молекулярных представлений (на примере изучения кислорода и водорода). Анализ и методика формирования количественных характеристик вещества. Понятие о химической реакции на уровне атомно-молекулярных представлений. Взаимосвязь первоначальных химических понятий. Развитие первоначальных химических понятий при изучении отдельных тем курса химии восьмого класса. Структура и содержание учебного химического эксперимента по разделу "Основные химические понятия". Проблемы методики преподавания основных химических понятий в средней школе. Особенности изучения раздела "Основные химические понятия" в вузовских курсах химии.

Научно-методический анализ раздела "Основные классы неорганических соединений". Структура, содержание и логика изучения основных классов неорганических соединений на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения оксидов, оснований, кислот и солей в основной школе. Анализ и методика формирования понятия о взаимосвязи между классами неорганических соединений. Развитие и обобщение понятий о важнейших классах неорганических соединений и о взаимосвязи между классами неорганических соединений в полной (средней) школе. Структура и содержание учебного химического эксперимента по разделу "Основные классы неорганических соединений". Проблемы методики преподавания основных классов неорганических соединений в средней школе. Особенности изучения раздела “Основные классы неорганических соединений" в вузовских курсах химии.

Научно-методический анализ раздела "Строение атома и периодический закон". Периодический закон и теория строения атома как научные основы школьного курса химии. Структура, содержание и логика изучения строения атома и периодического закона на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения строения атома и периодического закона. Проблемы, связанные с радиоактивным загрязнением территории Беларуси в связи с аварией на Чернобыльской АЭС.

Структура, содержание и логика изучения периодической системы химических элементов Д.И. Менделеева на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения периодической системы химических элементов на основе теории строения атома. Значение периодического закона. Особенности изучения раздела "Строение атома и периодический закон" в вузовских курсах химии.

Научно-методический анализ раздела "Химическая связь и строение вещества". Значение изучения химической связи и строения веществ в курсе химии. Структура, содержание и логика изучения химической связи и строения вещества на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика формирования понятия о химической связи на основе электронных и энергетических представлений. Развитие понятия о валентности на основе электронных представлений. Степень окисления элементов и ее использование в процессе обучения химии. Структура твердых веществ в свете современных представлений. Раскрытие зависимости свойств веществ от их структуры как основная идея изучения школьного курса. Особенности изучения раздела "Химическая связь и строение вещества" в вузовских курсах химии.

Научно-методический анализ раздела "Химические реакции".

Структура, содержание и логика изучения химических реакций на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика формирования и развития системы понятий о химической реакции в основной и полной (средней) школе.

Анализ и методика формирования знаний о скорости химической реакции. Факторы, влияющие на скорость химической реакции и методика формирования знаний о них. Мировоззренческое и прикладное значение знаний о скорости химической реакции.

Анализ и методика формирования понятий об обратимости химических процессов и химическом равновесии. Принцип Ле Шателье и его значение для использования дедуктивного подхода при изучении условий смещения равновесия при протекании обратимых химических реакций. Особенности изучения раздела "Химические реакции " в вузовских курсах химии.

Научно-методический анализ раздела "Химия растворов и основы теории электролитической диссоциации". Место и значение учебного материала о растворах в школьном курсе химии. Структура, содержание и логика изучения растворов на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения растворов в школьном курсе химии.

Место и значение теории электролитов в школьном курсе химии. Структура, содержание и логика изучения процессов диссоциации электролитов на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения основных положений и понятий теории электролитической диссоциации в школьном курсе химии. Раскрытие механизмов электролитической диссоциации веществ с разным строением. Развитие и обобщение знаний учащихся о кислотах, основаниях и солях на основе теории электролитической диссоциации.

Анализ и методика изучения гидролиза солей в профильных классах и классах с углубленным изучением химии. Значение знаний о гидролизе в практике и для понимания ряда природных явлений. Особенности изучения раздела "Химия растворов и основы теории электролитической диссоциации". в вузовских курсах химии.

Научно-методический анализ раздеов "Неметаллы» и "Металлы".. Образовательно-воспитательные задачи изучения неметаллов и металлов в курсе химии средней школы. Структура, содержание и логика изучения неметаллов и металлов на базовом, повышенном и углубленном уровнях изучения химии. Анализ и методика изучения неметаллов и металлов на различных этапах обучения химии. Значение и место химического эксперимента и средств наглядности при изучении неметаллов. Анализ и методика изучения подгрупп неметаллов и металлов. Межпредметные связи при изучении неметаллов и металлов. Роль изучения систематики неметаллов и металловдля развития общехимического и политехнического кругозора и научного мировоззрения учащихся. Особенности изучения раздела "Неметаллы" и «Металлы». в вузовских курсах химии.

Научно-методический анализ курса органической химии. Задачи курса органической химии. Структура, содержание и логика изучения органических соединений на базовом, повышенном и углубленном уровнях изучения химии в средней школе и вузе. Теория химического строения органических соединений как основа изучения органической химии.

Анализ и методика изучения основных положений теории химического строения. Развитие понятий об электронном облаке, характере его гибридизации, перекрывании электронных облаков, прочности связи. Электронное и пространственное строение органических веществ. Понятие об изомерии и гомологии органических соединений. Сущность взаимного влияния атомов в молекулах. Раскрытие идеи зависимости между строением и свойствами органических веществ. Развитие понятия о химической реакции в курсе органической химии.

Анализ и методика изучения углеводородов, гомо-, поли- и гетерофункциональных и гетероциклических веществ. Взаимосвязь классов органических соединений. Значение курса органической химии в политехнической подготовке и формировании научного мировоззрения учащихся и студентов. Взаимосвязь биологи и химии при изучении органических веществ. Органическая химия как основа для изучения интегративных дисциплин химико-биологического и медико-фармацевтического профиля.

  1. Асвета i педагагiчная думка ў Беларусi: Са старажытных часоў да 1917 г. Мн.: Народная асвета, 1985.
  2. Беспалько В.П. Слагаемые педагогической технологии. М.: Педагогика, 1989.
  3. Василевская Е.И. Теория и практика реализации преемственности в системе непрерывного химического образования Мн.: БГУ 2003
  4. Вербицкий А.А. Активное обучение в высшей школе. – М., 1991
  5. Верховский В.Н., Смирнов А.Д. Техника химического эксперимента. В 2ч. М.: Просвещение, 1973-1975.
  6. Вульфов Б.З., Иванов В.Д. Основы педагогики. М.: Изд-во УРАО, 1999.
  7. Грабецкий А.А., Назарова Т.С. Кабинет химии. М.: Просвещение, 1983.
  8. Государственный образовательный стандарт общего среднего образования. Ч. 3. Мн.: НИО, 1998.
  9. Давыдов В.В. Виды обобщений в обучении. М.: Педагогика, 1972.
  10. Давыдов В.В. Теория развивающего обучения. – М., 1996.
  11. Джуа М. История химии. М.: Мир, 1975.
  12. Дидактика средней школы / Под ред. М.Н. Скаткина. М.: Просвещение, 1982.
  13. Зайцев О.С. Методика обучения химии. М.: Гуманит. изд. центр ВЛАДОС, 1999.
  14. Зверев И.Д., Максимова В.Н. Межпредметные связи в современной школе. М.: Педагогика, 1981.
  15. Ерыгин Д.П., Шишкин Е.А. Методика решения задач по химии. – М., 1989.
  16. Иванова Р.Г., Осокина Г.И. Изучение химии в 9-10 кл. М.: Просвещение, 1983.
  17. Ильина Т.А. Педагогика. М.: Просвещение, 1984.
  18. Кадыгроб Н.А. Лекции по методике преподавания химии. Краснодар: Кубанский государственный университет, 1976.
  19. Кашлев С.С. Современные технологии педагогического процесса. Мн.: Университетское, 2000.
  20. Кирюшкин Д.М. Методика преподавания химии в средней школе. М.: Учпедгиз, 1958.
  21. Концепция образования и воспитания в Беларуси. Минск, 1994.
  22. Кудрявцев Т.В. Проблемное обучение: истоки, сущность, перспективы. М.: Знание, 1991.
  23. Кузнецова Н.Е. Педагогические технологии в предметном обучении. – С-ПБ., 1995.
  24. Куписевич Ч. Основы общей дидактики. М.: Высшая школа, 1986.
  25. Лернер И.Я. Дидактические основы методов обучения. М.: Педагогика, 1981.
  26. Лихачев Б.Т. Педагогика. М.: Юрайт-М, 2001.
  27. Макареня А.А. Обухов В.Л. Методология химии. - М., 1985.
  28. Махмутов М.И. Организация проблемного обучения в школе. М.: Просвещение, 1977.
  29. Менчинская Н.А. Проблемы учения и умственное развитие школьника. М.: Педагогика, 1989.
  30. Методика преподавания химии / Под ред. Н.Е. Кузнецовой. М.: Просвещение, 1984.
  31. Методика преподавания химии. М.: Просвещение, 1984.
  32. Общая методика обучения химии / Под ред. Л.А. Цветкова. В 2 ч. М.: Просвещение, 1981-1982.
  33. Обучение химии в 7 классе / Под ред. А.С. Корощенко. М.: Просвещение, 1992.
  34. Обучение химии в 9 кл. Пособие для учителей / Под ред. М.В. Зуевой, 1990.
  35. Обучение химии в 10 кл. Часть 1 и 2 / Под ред. И.Н.Черткова. М.: Просвещение, 1992.
  36. Обучение химии в 11 кл. Часть 1 / Под ред. Н. Черткова. М.: Просвещение, 1992.
  37. Особенности обучения и психического развития школьников 13–17 лет / Под ред. И.В. Дубровиной, Б.С. Кругловой. М.: Педагогика, 1998.
  38. Очерки истории науки и культуры Беларуси. Мн.: Навука i тэхнiка, 1996.
  39. Пак М.С. Дидактика химии. – М.: ВЛАДОС, 2005
  40. Педагогика / Под ред. Ю.К. Бабанского. М.: Просвещение, 1988.
  41. Педагогика / Под ред. П.И. Пидкасистого. М.: Педагогическое общество
    России, 1998.
  42. Педагогика / В.А. Сластенин, И.Ф. Исаев, А.И. Мищенко, Е.Н. Шиянов. М.: Школа-Пресс, 2000.
  43. Педагогика школы / Под ред. Г.И. Щукиной. М.: Просвещение, 1977.
  44. Першы з"езд настаўнікаў рэспублікі Беларусь. Дакументы, матэрыялы, выступленні. Мінск, 1997.
  45. Психология и педагогика / Под ред. К.А. Абульхановой, Н.В. Васиной, Л.Г. Лаптева, В.А. Сластенина. М.: Совершенство, 1997.
  46. Подласый И.П. Педагогика. В 2 кн. М.: Гуманит. изд. центр ВЛАДОС, 2002.
  47. Полосин В.С., Прокопенко В.Г. Практикум по методике преподавания химии. М.: Просвещение,1989
  48. Рабочая книга школьного психолога / Под ред. И.В. Дубровиной. М.: Международная педагогическая академия, 1995.
  49. Солопов Е.Ф. Концепции современного естествознания: Учеб. пособие для студ. высш. учеб. заведений. М.: ВЛАДОС, 2001.
  50. Талызина Н.Ф. Педагогическая психология. М.: Академия, 1998.
  51. Теоретические основы общего среднего образования / Под ред. В.В.Краевского, И.Я.Лернера. М.: Просвещение, 1983.
  52. Титова И.М. Обучение химии. Психолого-методический подход. СПб.: КАРО, 2002.
  53. Фигуровский Н.А. Очерк общей истории химии от древнейших времен до начала XIX века. М.: Наука, 1969.
  54. Фридман Л.М. Педагогический опыт глазами психолога. М.: Просвещение, 1987.
  55. Харламов И.Ф. Педагогика. Мн.: Унiверсiтэцкае, 2000.
  56. Цветков Л.А. Преподавание органической химии. М.: Просвещение, 1978.
  57. Цветков Л.А. Эксперимент по органической химии. М.:Просвещение, 1983.
  58. Чернобельская Г.М. Методика обучения химии в средней школе. М.: Гуманит. изд. центр ВЛАДОС, 2000.
  59. Шаповаленко С.Г. Методика обучения химии в восьмилетней школе и средней школе. М.: Гос. учебно-педагогич. издательство Мин. Просвещения РСФСР, 1963.
  60. Шапоринский С.А. Обучение и научное познание. М.: Педагогика, 1981.
  61. Яковлев Н.М., Сохор А.М. Методика и техника урока в школе. М.: Просв-ие, 1985.
  62. Литература к разделу ІІІ
  63. Агрономов А. Избранные главы органической химии. М.: Высшая школа, 1990.
  64. Ахметов Н.С. Общая и неорганическая химия. 3-е изд. М.:Высшая школа, 1998.
  65. Гликина Ф.Б., Ключников Н.Г. Химия комплексных соединений. М.: Высшая школа, 1982.
  66. Глинка Н.Л. Общая химия. Л.: Химия, 1985.
  67. Гузей Л. С., Кузнецов В. Н., Гузей А. С. Общая химия. М.: Изд-во МГУ, 1999.
  68. Зайцев О.С. Общая химия. М.: Химия, 1990.
  69. Князев Д.А., Смарыгин С.Н. Неорганическая химия. М.: Высшая школа, 1990.
  70. Коровин Н. В. Общая химия. М.: Высшая школа, 1998.
  71. Коттон Ф., Уилкинсон Дж. Основы неорганической химии. М.: Мир,1981.
  72. Новiкаў Г.I., Жарскi I.М.Асновы агульнай хiмii. Мн.:Вышэйшая школа, 1995.
  73. Органическая химия /под редакцией Н.М. Тюкавкиной/ М., Дрофа 1991.
  74. Сайкс П. Механизмы реакций в органической химии. М., 1991.
  75. Степин Б.Д., Цветков А.А. Неорганическая химия. М.: Высшая школа, 1994.
  76. Суворов А.В., Никольский А.Б. Общая химия. Санкт-Петербург.: Химия, 1994.
  77. Перекалин В., Зонис С. Органическая химия, М.: Просвещение, 1977.
  78. Потапов В. Органическая химия. М.: Высшая школа, 1983.
  79. Терней А. Современная органическая химия. Т 1,2. М., 1981.
  80. Угай Я.А. Общая и неорганическая химия. М.: Высшая школа, 1997.
  81. Уильямс В., Уильямс Х. Физическая химия для биологов. М.: Мир, 1976.
  82. Эткинс П. Физическая химия. Т. 1,2. М.: Мир, 1980.
  83. Шабаров Ю.С. Органическая химия. Т 1,2. М.: Химия 1996.
  84. Шершавина А.П. Физическая и коллоидная химия. Мн.: Універсітэцкае, 1995.

К основным разделам методики обучения химии относятся методы, формы, средства обучения и научная организация труда учителя химии.

Как известно, любое учебное содержание не может быть введено в учебный процесс вне метода. Поэтому метод обучения с философской точки зрения называют формой движения содержания в учебном процессе. Если предметное содержание -- дидактический эквивалент науки, то методы обучения -- дидактический эквивалент методов познания и методов изучаемой науки. Они должны отражать их структуру, специфику и диалектику. Поэтому в дидактике не случайно ставится вопрос о соотношении методов науки и методов обучения.

Главной задачей учителя является оптимальный выбор методов обучения, чтобы они обеспечивали образование, воспитание и развитие учащихся. Метод обучения -- это вид (способ) целенаправленной совместной деятельности учителя и руководимых им учащихся. Специфика методов обучения химии кроется, во-первых, в специфике содержания и методов химии как экспериментально-теоретической науки и, во-вторых, в особенностях познавательной деятельности учащихся, необходимости мыслить "двойным рядом образов", объяснять реально ощутимые свойства и изменения веществ состоянием и изменениями в невидимом микромире, понять которые можно, пользуясь теоретическими, модельными представлениями .

Следует помнить, что каждый метод нужно применять там, где он наиболее эффективно выполняет образовательную, воспитывающую и развивающую функции. Любой метод может и должен выполнять все три функции и выполняет их, если применен правильно, выбран адекватно содержанию и возрастным особенностям учащихся и используется не изолированно, а в сочетании с другими методами обучения. Методы обучения выбирает и применяет учитель, а воздействие личности учителя -- чрезвычайно важный фактор обучения, и особенно воспитания, учащихся. Поэтому, выбирая метод, учитель должен быть уверен, что в данных конкретных условиях именно этот метод будет оказывать наибольшее образовательное, воспитывающее, развивающее действие.

При изучении методов обучения химии затрагивается проблема оптимального их выбора. При этом учитывается следующее: 1) закономерности и принципы обучения; 2) цели и задачи обучения; 3) содержание и методы данной науки вообще и данного предмета, темы в частности; 4) учебные возможности школьников (возрастные, уровень подготовленности, особенности классного коллектива); 5) специфика внешних условий (географических, производственного окружения и пр.); 6) возможности самих учителей .

В основе классификации методов обучения лежат три важных признака: основные дидактические цели (изучение нового материала, закрепление и совершенствование знаний, проверка знаний), источники знаний, а также характер познавательной деятельности учащихся.

Методы можно классифицировать по функциям: образовательной, воспитывающей и развивающей, которые должны в той или иной мере реализовывать все методы. Кроме того, выделяют специальные функции отдельных групп методов обучения: методы организации и осуществления учебно-познавательной деятельности учащихся, доминирующей функцией которых является организация познавательной деятельности учащихся по чувственному восприятию, логическому осмысливанию учебной информации, самостоятельности в поиске новых знаний; методы стимулирования и мотивации познавательной деятельности, доминирующей функцией которых является стимулирующе-мотивационная, регулировочная, коммуникативная; методы контроля и самоконтроля учебно-познавательной деятельности, доминирующей функцией которых является контрольно-оценочная деятельность .

Методы организации и осуществления учебно-познавательной деятельности учащихся -- это большая и сложная группа методов. Наиболее близкая к химии и удобная для систематического изучения классификация этой группы методов -- деление по характеру познавательной деятельности (объяснительно-иллюстративный, эвристический, исследовательский). Каждый такой метод выступает в качестве методического подхода. А в их рамках используются более частные методы, различающиеся по источнику знаний (словесные, словесно-наглядные, словесно-наглядно-практические). Обращает на себя внимание то, что в этой классификации нет членения на чистые наглядные и практические методы. Здесь учтена взаимная интеграция групп методов. Эти группы методов разделяются на отдельные конкретные методы (лекция, рассказ, беседа и т. д.). Таким образом возникает четкая система методов обучения по следующим признакам:

1. Характер познавательной деятельности учащихся (общие методы): объяснительно-иллюстративный, эвристический, исследовательский.

2. Вид источников знаний (частные методы): словесные, словесно-наглядные, словесно-наглядно-практические.

3. Формы совместной деятельности учителя и учащихся (конкретные методы): лекция, рассказ, объяснение, беседа, самостоятельная работа, программированное обучение, описание и т. д.

В данной классификации также имеются спорные вопросы, которые свидетельствуют о сложности задачи классификации методов обучения, однако она достаточно удобна для практического пользования .

Рассмотрим особенности деятельности учащихся и учителя в условиях разных общих методов обучения.

При объяснительно-иллюстративном методе учитель сообщает учащимся готовые знания, используя разные частные и конкретные методы -- объяснение учителя, работа с книгой, магнитофоном и т. д. При этом, если нужно, применяются средства наглядности (эксперимент, модели, экранные пособия, таблицы и т.п.). Может быть использован и лабораторный эксперимент, но лишь как иллюстрация слов учителя. При объяснительно-иллюстративном методе предполагается сознательная, но репродуктивная деятельность учащихся и применение знаний в сходных ситуациях .

Эвристические методы могут осуществляться при активном участии учителя. В качестве примера можно привести эвристическую беседу о выявлении сравнительной активности галогенов, в которой поиск учащихся постоянно корректируется учителем. Демонстрируя опыт, приливают в раствор иодида калия крахмальный клейстер -- окраски не наблюдается. Отдельно в хлорную воду также приливают крахмальный клейстер -- окраски тоже нет. Когда же смешивают все три компонента вместе -- иодид калия, крахмальный клейстер и хлорную воду, крахмал синеет. Далее учитель ведет беседу по анализу данного опыта.

При исследовательском методе также возможна разная степень самостоятельности и сложности задачи исследования. Ученическое исследование, как и научное, сочетает в себе использование теоретических знаний и эксперимента, требует умения моделировать, осуществлять мысленный эксперимент, строить план исследования, например при решении экспериментальных задач. В более сложных случаях при исследовательском методе ученик сам формулирует проблему, выдвигает и обосновывает гипотезу и разрабатывает эксперимент для ее проверки. Для этого он пользуется справочной и научной литературой и т. д. Таким образом, при исследовательском методе от учащихся требуется максимум самостоятельности. Вместе с тем при использовании такого метода требуется значительно больше времени.

Рассмотрим словесные методы обучения, среди которых различают монологические и диалогические.

К монологическим методам обучения относят описание, объяснение, рассказ, лекцию, построенные в основном на изложении материала самим учителем.

Описание знакомит учащихся с фактами, добытыми путем эксперимента и наблюдения в науке: способы защиты окружающей среды от вредных воздействий отходов промышленных предприятий, круговорот того или иного элемента в природе, ход химического процесса, характеристика прибора и т. д. При этом методе полезно использовать наглядность.

Объяснение применяется для изучения сущности явлений, для ознакомления учащихся с теоретическими обобщениями: например, в VII классе -- с законом сохранения массы веществ с точки зрения атомно-молекулярного учения, в VIII классе -- с причинами периодической повторяемости свойств элементов или процессом обратимости и необратимости реакций и т. д. При этом методе вскрываются связи между понятиями и отдельными фактами. В объяснении главное -- четкость. Она достигается соблюдением строгой логической последовательности изложения, установлением связей с уже известными учащимся знаниями, доступностью терминов, правильным использованием записей на доске и в тетрадях учащихся, приведением доступных конкретных примеров, расчленением объяснения на логически законченные части с поэтапным обобщением после каждой части, обеспечением закрепления материала.

Лекция -- более длительный вид монологического изложения. Она включает в себя и описание, и объяснение, и рассказ, и другие виды кратковременного монологического изложения с использованием средств наглядности.

К диалогическим методам относят разные виды бесед, семинары, в основе которых лежат диалог учителя с учащимися, диспут между учащимися и т. д.

Беседа -- это диалог учителя с учащимися. Выражается она в том, что учитель задает учащимся вопросы, а они на них отвечают. Иногда бывает, что в процессе беседы у учащихся возникает вопрос, на который учитель либо отвечает сам, либо организует для этого учащихся.

К новым в школьной практике методам относится семинар, который также можно причислить к словесным диалогическим методам обучения. Семинар практикуется в основном со старшеклассниками. Учащиеся к нему готовятся по заранее разработанному плану. Проводится семинар, как правило, по достаточно большому разделу, теме в форме обсуждения учащимися той или иной проблемы. Полезнее всего проводить семинары с целью обобщения знаний учащихся. На семинаре учащимся предоставляется для высказываний большее время, чем при беседе, обращается внимание на их речь, логику, аргументацию, умение участвовать в дискуссии и т. д. В качестве тем семинарских занятий можно предложить, например, такие: "Зависимость свойств углеводородов от их строения", "Значение достижений органической химии в развитии народного хозяйства" и др. Семинар -- это метод, сближающий школьные формы работы с вузовскими, и для старшеклассников он полезен.

Словесно-наглядные методы обучения определяют использование в учебном процессе различных средств наглядности в сочетании со словом учителя. Они непосредственно связаны со средствами обучения и зависят от них. Кроме того, методы обучения предъявляют к дидактическим средствам определенные требования. Процесс устранения этого противоречия лежит в основе совершенствования этих систем.

Систему словесно-наглядных методов обучения и ее место в учебном процессе можно представить себе в виде схемы (схема 6).

Схема Система словесно-наглядных методов обучения

Такое разделение на блоки определено содержанием курса химии. Демонстрационный эксперимент и натуральные объекты помогают изучать свойства веществ, внешние проявления химической реакции. Модели, чертежи, графики (сюда же следует отнести и составление формул и химических уравнений как знаковых моделей веществ и процессов) способствуют объяснению сущности процессов, состава и строения веществ, теоретическому обоснованию наблюдаемых явлений. Такое разделение функций наглядности говорит о необходимости использования содержания обоих блоков в дидактическом единстве. В этом случае методы обучения будут способствовать движению от фактов -- к теории, от конкретного -- к абстрактному. Дидактическое единство нашло свое отражение в так называемых комплексах оборудования по теме. Сущность их заключается в том, что для решения разных задач обучения используют различные средства наглядности в пределах одного урока, выполняющие многообразные функции и дополняющие друг друга. Если, например, демонстрируемый прибор слишком мал и плохо виден издали, а знать его устройство учащимся необходимо, учитель может воспроизвести его в виде чертежа, сделать рисунок на доске или изобразить его с помощью магнитных аппликаций, фланелеграфа. Химический процесс в приборе протекает при определенных условиях. Для их обоснования можно привести справочные данные о веществах в виде графиков или цифровых данных, объяснить протекание процесса при помощи шаростержневых моделей и пр. Важно не увлекаться избытком наглядности, так как это утомляет учащихся. Особое внимание следует уделить сочетанию наглядности со словом учителя. Опыт, показанный без комментария учителя, не только не приносит пользы, но иногда может даже повредить. Например, при демонстрации взаимодействия цинка с соляной кислотой учащиеся могут вынести впечатление, что водород выделяется не из кислоты, а из цинка. Весьма распространенной ошибкой является мнение о том, что окраску меняет не индикатор, а среда, в которую он попадает. И большинство других опытов без пояснений не будут выполнять необходимых образовательной, воспитывающей и развивающей функций, Поэтому слово учителя играет важную руководящую и направляющую роль. Но и слово находится в определенной зависимости от средств наглядности, так как учитель строит свое объяснение, ориентируясь на те средства обучения, которые имеются в его распоряжении.

Использование демонстрационного эксперимента в обучении химии

Важнейшим из словесно-наглядных методов обучения является использование демонстрационного химического эксперимента. Специфика химии как науки экспериментально-теоретической поставила учебный эксперимент на одно из ведущих мест. Химический эксперимент в обучении позволяет ближе ознакомить учащихся не только с самими явлениями, но и с методами химической науки.

Демонстрационным называют эксперимент, который проводится в классе учителем, лаборантом или иногда одним из учащихся. Демонстрационные опыты по химии указаны в программе, но учитель может заменить их другими, эквивалентными в методическом отношении, если у него отсутствуют требуемые реактивы.

Проблема использования школьного химического эксперимента -- одна из наиболее разработанных в методике, так как именно она более других отражает специфику учебного предмета. Широко известны в методике исследования В. Н. Верховского, К. Я. Парменова, В. С. Полосина, Л. А. Цветкова, И. Н. Черткова и др. Материалы о химическом эксперименте регулярно публикуются на страницах журнала "Химия в школе". Общеизвестны требования к демонстрационному эксперименту.

Наглядность. Реактивы должны использоваться в таких количествах и в посуде такого объема, чтобы все детали были хорошо видны всем учащимся. Пробирочные опыты видны хорошо не далее третьего ряда столов, поэтому для демонстрирования применяют цилиндры, стаканы или демонстрационные пробирки достаточно большого объема. Со стола снимают все, что может отвлечь внимание. Жест учителя тщательно продуман, руки учителя не заслоняют происходящее.

Наглядность опыта можно усилить, демонстрируя его через кодоскоп в кювете или чашке Петри. Например, взаимодействие натрия с водой нельзя показывать с большим количеством металла, а с малым количеством он плохо виден, выдать же его учащимся для лабораторной работы нельзя -- опыт опасен. Опыт, иллюстрирующий свойства натрия, очень хорошо виден при проецировании через кодоскоп. Для большей наглядности широко используются предметные столики.

Простота. В приборах не должно быть нагромождения лишних деталей. Следует помнить, что, как правило, в химии объектом изучения является не сам прибор, а процесс, в нем происходящий. Поэтому чем проще сам прибор, тем он лучше отвечает цели обучения, тем легче объяснить опыт. Однако не нужно путать простоту с упрощенчеством. Нельзя употреблять в опытах бытовую посуду -- это снижает культуру эксперимента.

Учащиеся с большим удовольствием смотрят эффектные опыты со вспышками, взрывами и т. д., но увлекаться ими, особенно в начале обучения, не следует, так как менее эффектные опыты тогда пользуются меньшим вниманием.

Безопасность эксперимента. Учитель несет полную ответственность за безопасность учащихся во время урока или на внеклассных занятиях. Поэтому он обязан знать правила техники безопасности при работе в химическом кабинете. Помимо обеспечения занятий средствами пожарной безопасности, вытяжными средствами, средствами для оказания мер первой помощи пострадавшим, учителю необходимо помнить о приемах, способствующих соблюдению безопасности на уроке. Посуда, в которой проводится опыт, должна быть всегда чистой, реактивы проверены заранее, при опытах со взрывами используется защитный прозрачный экран. Газы на чистоту проверяют заранее и перед проведением самого опыта. Если опыт проводится со взрывом, учащихся предупреждают об этом заранее, чтобы взрыв не был для них неожиданностью. Нужно предусмотреть средства личной безопасности (защитные очки, халат из хлопчатобумажной ткани, резиновые перчатки, противогаз и т. д.), следить за тем, чтобы волосы были подобраны .

Надежность. Опыт должен всегда удаваться, так как неудавшийся опыт вызывает у учащихся разочарование и подрывает авторитет учителя. Опыт проверяют до урока, чтобы отработать технику его проведения, определить время, которое он займет, выяснить оптимальные условия (последовательность и количество добавляемых реактивов, концентрация их растворов), продумать место эксперимента в уроке и план объяснения. Если опыт все же не удался, лучше сразу же показать его вторично. Причину неудачи следует объяснить учащимся. Если опыт снова провести невозможно, то его обязательно показывают на следующем уроке.

Необходимостъ объяснения эксперимента. Каждый эксперимент лишь тогда имеет познавательную ценность, когда его объясняют. Лучше меньше опытов на уроке, но все они должны быть понятны учащимся. По замечанию И. А. Каблукова учащиеся должны смотреть на опыт как на метод исследования природы, как на вопрос, задаваемый природе, а не как на "фокус-покус".

Важнейшим требованием к демонстрационному эксперименту является филигранная техника его выполнения. Малейший ошибочный прием учителя будет многократно повторен его учениками.

В соответствии с перечисленными требованиями рекомендуется следующая методика демонстрации опытов .

1. Постановка цели опыта (или проблемы, которую нужно решить). Учащиеся должны понимать, для чего проводится опыт, в чем они должны убедиться, что понять в результате проведения опыта.

2. Описание прибора, в котором проводится опыт, условий, в которых он проводится, реактивов с указанием их требуемых свойств.

3. Организация наблюдения учащихся. Учитель должен сориентировать учащихся, за какой частью прибора наблюдать, чего ожидать (признак реакции) и т. д.

4. Вывод и теоретическое обоснование.

Для хорошего владения химическим экспериментом нужно многократное и длительное упражнение в его проведении.

Развивающая функция эксперимента может быть усилена посредством разных способов сочетания эксперимента со словом учителя. Выявлены четыре основных способа сочетания слова учителя с экспериментом:

1) знания извлекаются из самого опыта. Объяснение учителя сопровождает опыт, идет как бы параллельно процессу, который наблюдают учащиеся. Такое сочетание неприемлемо для эффектных опытов, которые привлекают внимание учащихся ярким зрелищем, создают сильный доминирующий очаг возбуждения в коре головного мозга;

2) слово учителя дополняет наблюдения, сделанные в опыте, поясняет то, что видят учащиеся (например, опыт с восстановлением меди из оксида водородом);

3) слово учителя предшествует эксперименту, который выполняет иллюстративную функцию;

4) сначала дается словесное объяснение, расшифровка явления, а затем демонстрационный эксперимент. Однако из этого не следует, что при демонстрировании учитель предугадывает ход эксперимента и рассказывает, что должно получиться.

Первый и второй подход используют при проблемном обучении; они более способствуют развитию мыслительной деятельности.

Использование учебно-наглядных пособий при обучении химии

Помимо демонстрационного эксперимента, в арсенале учителя химии имеется множество других средств наглядности, которые при правильном использовании повышают эффективность и качество урока (классная доска, таблицы различного содержания, модели, макеты, магнитные аппликации, экранные пособия). Их применяют как в сочетании с химическим экспериментом и друг с другом, так и раздельно, но обязательно со словом учителя.

Запись на доске нужно заранее планировать. Она должна выполняться четко и последовательно, так, чтобы весь ход урока был отражен на доске. В этом случае учитель может вернуться к уже объясненному и обсудить с учащимися недостаточно хорошо усвоенные вопросы. Рисунки на доске выполняют при помощи трафаретов.

Учитель руководит также работой учащихся у доски, чтобы их запись была четкой и аккуратной.

Запись на доске целесообразнее других видов наглядности в тех случаях, когда нужно отразить последовательность вывода формулы или другого алгоритмического предписания. Пользоваться следует только чистой доской, на которой нет посторонних записей. Стоять у доски учитель должен так, чтобы не загораживать запись, которую он делает.

Необходимо помнить, что решение задач -- это не самоцель, а средство обучения, способствующее прочному усвоению знаний.

Классифицируют задачи по типам решений, в основном на качественные и расчетные.

Качественные задачи по химии

Среди широко известных типов качественных задач можно указать следующие:

1. Объяснение перечисленных или наблюдаемых явлений: почему реакция карбоната кальция с серной кислотой начинается сначала бурно, а затем прекращается? Почему при нагревании сухого карбоната аммония образуется другое вещество?

2. Характеристика конкретных веществ: с какими веществами и почему может реагировать соляная кислота? С какими из перечисленных веществ будет вступать в реакцию соляная кислота?

3. Распознавание веществ: в какой из пробирок находятся кислота, щелочь, соль? В какой из пробирок находятся соляная кислота, серная, азотная?

4. Доказательство качественного состава веществ: как доказать, что в состав хлорида аммония входят ион аммония и ион хлора?

5. Разделение смесей и выделение чистых веществ: как очистить кислород от примеси оксида углерода (IV)?

6. Получение веществ: получить хлорид цинка всеми возможными способами.

К этому же типу задач относят и цепочки превращений, а также получение вещества, если дан ряд других веществ как исходных. Могут быть задачи на применение прибора, например: указать, какой из приборов можно использовать для собирания аммиака, кислорода, водорода, хлора и т. д. .

Выбор редакции
Общая характеристика Жизнью людей, рожденных под этим знаком, управляет чувство красоты, гармонии и справедливости. Благодаря такту,...

Белое вино — означает романтичность натуры спящего и предвещает Вам неожиданный прилив больших наличных денег, что значительно улучшит...

Быстрый переход к толкованиямУ многих народов летучая мышь является символом интуиции. Если снится крылатый зверек, то сновидцу следует...

Лепить во сне пельмени означает наступление нужды, ухудшение самочувствия и погибшие надежды. Покупать пельмени в магазине – наяву...
Ну кто же не любит спелую сладкую черешню? Она является одним из самых долгожданных лакомств в летний сезон практически для каждого...
Сон, в котором видится дохлый пес, можно назвать пугающим и ужасающим. Но чтобы его истолковать и узнать, к чему снится мертвая собака,...
Квас из чистотела по рецепту Болотова собрал весьма противоречивые отзывы, но к ним мы вернемся чуть ниже. А сейчас поговорим о полезных...
В переводе с грузинского «сацебели» - просто «соус», причем название произносят с ударением на первый слог. Чаще его делают из орехов,...
Сыроедческие спагетти лишь условно можно назвать именем популярных макаронных изделий, так как живые спагетти похожи на оригинал только...